
Cooperative Data Sharing (CDS)

Overview

David DiNucci, PhD
Elepar: Working Together Independently
dave@elepar.com www.elepar.com

Elepar’s Three Layers

User’s Application

Traditional Languages,
Tools, Compilers

Visual Component
Construction Language

Portable Communication
Library

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
portable, distributable apps from mod-
ules implemented in traditional langs

Efficiently supports messaging (push),
blackboard/shared (pull), & hybrid
styles on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

CDS: Cooperative Data Sharing

History: Early musings at OGI, prototype implemented and
published at NASA Ames, now under development at Elepar

Approach: Determine common features of shared memory and
message passing, build subroutine interface around those features,
include other expected features (process control, active messages,
conversion/marshalling).

Result: Compared to other communication layers (e.g. MPI, sockets,
DSM), it is:

• Relatively simple/Small
• Expressive/Powerful
• Very portable to different uniprocessor & parallel architectures

CDS: Anatomy of a CDS Process

Comm Cells: Logically public set of queues. User is
 responsible for creating and deleting.

Comm Heap: Logically private heap. Data is
 optimized for communication.
User is responsible for enlarging
and/or shrinking.

User code & data: Standard
Unix process.

CDS Basic Communication Operations

Comm Heap User Code

rgalloc

rgfree

put

get

zap

Frees up a region in the local comm heap

Allocates a region in the local comm heap

“Copies” region from local comm heap to
end of any cell, optionally freeing region
from heap and/or zapping cell before
depositing new region. AKA “write” if cell

“Copies” region from beginning of any cell to
local comm heap, optionally removing it from
cell after. AKA “deq” if removed, “read” if not.

Comm
Cells
(Any
Process)

“Copy” operation is virtual (i.e. usually copy on write), so these are usually just pointer

blocks until cell empty and a get is waiting

All ops that can block (i.e. bput, get, deq and read) take a time-out value, and also

“i” versions (ibput, iget, ideq, and iread, respectively), resolved with a wait op.

ops. For portability, rgmod must be called before modifying any potentially-shared rgn.

zapped, “enq” if not. bput same, but

CDS: Logical View

C.Heap Code

Code

Code

Code

C.Heap

C.Heap C.Heap

CDS: Physical View on 3 Nodes

Node 1 Node 2
Node 3 daemon

CDS: Other Functionality

Process Initiation/Active Messages (“Handlers”)

High and low water marks can be set on each cell

A “handler” function can be chosed to be invoked each time that
watermark is exceeded.

Copying/Marshalling/Conversion

Although process can access regions in comm heap directly,
“copyfm”, “copyto” routines exist to pack, unpack, and/or convert
data as it is being moved to or from region, based on internally-
supported conversion tables.

CDS Shared Mem & Msg Passing “Macros”

enqing reqion ~= releasing a lock, deqing region ~= acquiring a lock.

Msg passing includes copy to/from comm heap, can be optimized out.

Corresponding “i” ops: iacqrl, iacqwl, irecv, irecvx, ibsend

“Macro” Meaning Translates Into
acqwl Acquire write lock deq, rgmod
rlswl Release write lock write, rgfree
acqrl Acquire read lock read
rlsrl Release read lock rgfree
wl2rl Write lock -> read lock write

“Macro” Meaning Semantically identical to
send Send message rgalloc, copyto, enq, rgfree
recv Receive message deq, copyfm, rgfree
sendx Destructive send rgalloc, copyto, write, rgfree
recvx Non-destructive receive read, copyfm, rgfree
bsend Synchro or ready send rgalloc, copyto, bput, rgfree

Comparing CDS Featureset

Features
C
D
S

D
S
M

M
P
I

S
O
C
K

L
I
N
D
A

Some data can be traded/shared in place (true 0 copy!) x x

Consumer can pull (get) data from passive producer x x 2 x

Consumer can prefetch/prepull data to hide latency x ? 2

Producer can push (send) data to passive consumer x x x ?

Data can be queued at producer waiting for pull x x x ?

Pushed data can be made to overwrite previous value x x x

Producer can retain access rights to comm’d data x 2 x

Producer can relinq access rights to comm’d data x x x x

Dynamic memory allocation for shared memory x ?

Consumer can specify timeout for waiting x ?

Supports heterogeneous platforms x x

Simplicity (~number of function + macro interfaces) 51 20 !!! 13 5

The CDS Interface

Managing comm heap and contexts/cells
rgalloc rgmod rgfree rgsize rgrealloc

addcntxt delcntxt grwcntxt

Communication Primitives
read deq benq enq write zap enqm writem

iread ideq ibenq wait waitm ienqm benqm

Copying and Translation
copyto copyfm copytofm transtab

Composite functions (shared mem and msg passing)
recv bsend recvx send sendx sendm sendxm

acqrl acqwl rlsrl rlswl wl2rl

irecv ibsend irecvx iacqrl iacqwl

Process and thread control
enlist init myinfo hdlr prior

