Cooperative Data Sharing (CDS)

Overview

David DiNucci, PhD
Elepar: Working Together Independently

dave@l epar.com www. el epar. com

Elepar’s Three Layers

User’s Application
| |

Software Cabling (SC):
L .
Frqrdégf)s?%;lor%, lérages’ ‘ Visual OO component coordination

, Construction Language

| portable, distributable apps from mod-
' ulesimplemented in traditional langs
Portable Communicatio Cooperative Data Sharing (CDS):

Library Efficiently supports messaging (push),
= blackboard/shared (pull), & hybrid
Parald || '3 REOUCE vjes on variety of architectures

Y
or Uni- anagement People, Instruments, Computers, and
processor platform/OS ‘ Archives (PICA): Ryjes and proto-

cols for finding, bargaining for, and
Grid/P2P/Internet scheduling distributed, independently-
controlled resources of all kinds

CDS. Cooperative Data Sharing

History: Early musingsat OGl, prototype implemented and
published at NASA Ames, now under development at Elepar

Approach: Determine common features of shared memory and
message passing, build subroutine interface around those features,
Include other expected features (process control, active messages,
conver sion/mar shalling).

Result: Compared to other communication layers (e.g. MPI, sockets,
DSM), it is:

» Relatively smple/Small
e EXxpressive/Powerful
* Very portableto different uniprocessor & parallel architectures

CDS:. Anatomy of a CDS Process

Comm Ceélls: Logically public set of queues. User is
responsible for creating and deleting.

Comm Heap: Logically private heap. Datais
optimized for communication.

User isresponsible for enlarging
and/or shrinking.

User code & data: Standard

) 1El — Unix process

|

CDS Basic Communication Operations

Comm Heap User Code _ Allocates aregion inthelocal comm heap
rgalloc |~ _{Freesup aregionin thelocal commheap
N rgiree | | " “Copies’ region from |ocal comm heap to ™
- put - endof any cell, optionally freeing region |
1 from heap and/or zapping cell before |
< gt - depositing new region. AKA “write” if cell |
zap A ‘.| zapped, “enq” if not. bput same, but |
| \ . blocks until cell empty and agetiswaiting |

\
[‘Tﬁﬁégf region from beginning of any cell to |
Cdls U . local comm heap, optionally removing it from

cell after. AKA “deq” if removed, “read” if not.

|
L—_ - - - - = J

All opsthat can block (i.e. bput , get , deq andr ead) take atime-out value, and also
“I” versions (i bput , 1 get ,i deq,andi r ead, respectively), resolved withawai t op.

“Copy” operation isvirtual (i.e. usually copy on write), so these are usually just pointer
ops. For portability, r gnod must be called before modifying any potentially-shared rgn

CDS:. Logical View

CDS:. Physical View on 3 Nodes

daemon

Node 3

_

CDS:. Other Functionality

Process | nitiation/Active Messages (“Handlers’)

High and low water marks can be set on each cell

A “handler” function can be chosed to be invoked each time that
water mark is exceeded.

Copying/M ar shalling/Conver sion

Although process can access regionsin comm heap directly,

“copyf nt,“copyt 0” routinesexist to pack, unpack, and/or convert
data asit isbeing moved to or from region, based on internally-
supported conversion tables.

CDS Shared Mem & Msg Passing “Macros’

engingregion ~=releasing alock, deqing region ~= acquiring a lock.

“Macro” Meaning Translates Into
acqw Acquire write lock deq, rgnod
risw Release write lock wite, rgfree
acqr | Acquire read lock r ead
rlisrl Release read lock rgfree
W 2r | Write lock -> read lock wite

M sg passing includes copy to/from comm heap, can be optimized out.

“Macro” Meaning Semantically identical to
send Send message rgalloc, copyto, enq, rgfree
recv Receive message deq, copyfm rgfree
sendx Destructive send rgal |l oc, copyto, wite, rgfree
recvx Non-destructive receive read, copyfm rgfree
bsend Synchro or ready send | rgal |l oc, copyto, bput, rgfree

Corresponding“1” ops:. 1 acqrl ,iacgwl ,irecv,i recvx,i bsend

Comparing CDS Featureset

Features

w TN
200

i—t"ﬁz
~AOOWw

> Z—r

Some data can be traded/shared in place (true 0 copy!)

Consumer can pull (get) data from passive producer

Consumer can prefetch/prepull data to hide latency

Producer can push (send) data to passive consumer

Data can be queued at producer waiting for pull

Pushed data can be made to overwrite previous value

Producer can retain access rights to comm’d data

Producer can relinq access rights to comm’d data

Dynamic memory allocation for shared memory

Consumer can specify timeout for waiting

Supports heterogeneous platforms

Simplicity (~number of function + macro interfaces)

51

20

"

The CDS Interface

Managing comm heap and contexts/cells
rgall oc rgnodrgfree rgsizergreall oc
addcnt xt del cnt xt grwent xt
Communication Primitives
read deq benqg eng wite zap engm witem
Iread ideq I beng wait waitm i engm bengm
Copying and Trandlation
copyto copyfm copytof mtranstab
Composite functions (shared mem and msg passing)
recv bsend recvx send sendx sendm sendxm
acgrl acgwl rlsrl rlsw w 2rl
lrecv 1 bsend irecvx i1acqgrl 1acqw
Process and thread control
enlist init nyinfo hdlr prior

