
Making Peer-to-Peer Computing
Truly Computing Among Peers

David DiNucci, PhD
Elepar: Working Together Independently
dave@elepar.com www.elepar.com

Peer-to-Peer Computing is...

Hype, partly implied by “Peer-to-Peer” moniker

Current reality (e.g. SETI@home, Intel/UD cancer cure)

So for now, only effective on data parallel—i.e. uniform calculations
over huge domains and/or parameter spaces

SP &
OriginCray

Server

Why Reality != Hype

As usual, achieving the hype is too hard!
• Dynamic topology -> Resource discovery/reservation/scheduling
• Heterogeneous speed/archit. -> Portability/Variable granularity
• Local or distributed comm -> Latency tolerance/Low overhead
• Many decentralized components -> Fault tolerance
• Complex & concurrent -> Formal analysis, debugging rules
• App still #1 -> Leveraging existing tools, languages, techniques
• Utilizing untrusted resources -> Privacy/Security/Anonymity

...i.e. all of the hard problems of parallel and distributed computing
over the decades. (May be reason hardware corp’s so behind P2P!)

If you had a program with all of these traits, wouldn’t you want to be
able to run it in more environments than just peer-to-peer?

High-Level Plan of Attack...Dataflowish

“Portable threads”
implemented in your
favorite language.
Stateless, atomic
--> functional

App is composed of

If multiple communicating
threads end up on same node

effectively “merge” ovhd-wise

Resources (processors)
found & scheduled via
bidding and brokers

Network/Switch

NodeNodeNode

(or tightly bound nodes), they

Elepar’s Three Layers

User’s Application

Traditional Languages,
Tools, Compilers

Visual Component
Construction Language

Portable Communication
Library

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
portable, distributable apps from mod-
ules implemented in traditional langs

Efficiently supports messaging (push),
blackboard/shared (pull), & hybrid
styles on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

CDS: Cooperative Data Sharing

History: Early musings at OGI, prototype implemented and
published at NASA Ames, now under development at Elepar

Approach: Determine common features of shared memory and
message passing, build subroutine interface around those features,
include other expected features (process control, active messages,
conversion/marshalling).

Result: Compared to other communication layers (e.g. MPI, sockets,
DSM), it is:

• Relatively simple/Small
• Expressive/Powerful
• Very portable to different uniprocessor & parallel architectures

CDS: Anatomy of a CDS Process

Comm Cells: Logically public set of queues. User is
 responsible for creating and deleting.

Comm Heap: Logically private heap. Data is
 optimized for communication.
User is responsible for enlarging
and/or shrinking.

User code & data: Standard
Unix process.

CDS Basic Communication Operations

Comm Heap User Code

rgalloc

rgfree

put

get

zap

Frees up a region in the local comm heap

Allocates a region in the local comm heap

“Copies” region from local comm heap to
end of any cell, optionally freeing region
from heap and/or zapping cell before
depositing new region. AKA “write” if cell

“Copies” region from beginning of any cell to
local comm heap, optionally removing it from
cell after. AKA “deq” if removed, “read” if not.

Comm
Cells
(Any
Process)

“Copy” operation is virtual (i.e. usually copy on write), so these are usually just pointer

blocks until cell empty and a get is waiting

All ops that can block (i.e. bput, get, deq and read) take a time-out value, and also

“i” versions (ibput, iget, ideq, and iread, respectively), resolved with a wait op.

ops. For portability, rgmod must be called before modifying any potentially-shared rgn.

zapped, “enq” if not. bput same, but

CDS: Logical View

C.Heap Code

Code

Code

Code

C.Heap

C.Heap C.Heap

CDS: Physical View on 3 Nodes

Node 1 Node 2
Node 3 daemon

CDS: Other Functionality

Process Initiation/Active Messages (“Handlers”)

High and low water marks can be set on each cell

A “handler” function can be chosed to be invoked each time that
watermark is exceeded.

Copying/Marshalling/Conversion

Although process can access regions in comm heap directly,
“copyfm”, “copyto” routines exist to pack, unpack, and/or convert
data as it is being moved to or from region, based on internally-
supported conversion tables.

CDS Shared Mem & Msg Passing “Macros”

enqing reqion ~= releasing a lock, deqing region ~= acquiring a lock.

Msg passing includes copy to/from comm heap, can be optimized out.

Corresponding “i” ops: iacqrl, iacqwl, irecv, irecvx, ibsend

“Macro” Meaning Translates Into
acqwl Acquire write lock deq, rgmod
rlswl Release write lock write, rgfree
acqrl Acquire read lock read
rlsrl Release read lock rgfree
wl2rl Write lock -> read lock write

“Macro” Meaning Semantically identical to
send Send message rgalloc, copyto, enq, rgfree
recv Receive message deq, copyfm, rgfree
sendx Destructive send rgalloc, copyto, write, rgfree
recvx Non-destructive receive read, copyfm, rgfree
bsend Synchro or ready send rgalloc, copyto, bput, rgfree

Comparing CDS Featureset

Features
C
D
S

D
S
M

M
P
I

S
O
C
K

L
I
N
D
A

Some data can be traded/shared in place (true 0 copy!) x x

Consumer can pull (get) data from passive producer x x 2 x

Consumer can prefetch/prepull data to hide latency x ? 2

Producer can push (send) data to passive consumer x x x ?

Data can be queued at producer waiting for pull x x x ?

Pushed data can be made to overwrite previous value x x x

Producer can retain access rights to comm’d data x 2 x

Producer can relinq access rights to comm’d data x x x x

Dynamic memory allocation for shared memory x ?

Consumer can specify timeout for waiting x ?

Supports heterogeneous platforms x x

Simplicity (~number of function + macro interfaces) 51 20 !!! 13 5

The CDS Interface

Managing comm heap and contexts/cells
rgalloc rgmod rgfree rgsize rgrealloc

addcntxt delcntxt grwcntxt

Communication Primitives
read deq benq enq write zap enqm writem

iread ideq ibenq wait waitm ienqm benqm

Copying and Translation
copyto copyfm copytofm transtab

Composite functions (shared mem and msg passing)
recv bsend recvx send sendx sendm sendxm

acqrl acqwl rlsrl rlswl wl2rl

irecv ibsend irecvx iacqrl iacqwl

Process and thread control
enlist init myinfo hdlr prior

Elepar’s Three Layers

User’s Application

Traditional Languages,
Tools, Compilers

Visual Component
Construction Language

Portable Communication
Library

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
portable, distributable apps from mod-
ules implemented in traditional langs

Efficiently supports messaging (push),
blackboard/shared (pull), & hybrid
styles on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

SC: Software Cabling

CDS lays the groundwork for creating apps as collections of small,
portable, sequential threads which can be stateless and atomic.

SC is a very-high-level graphical component composition language
which leverages CDS communication style. It contains the necessary
constructs to make real-world programming possible: e.g.

• Modular (OO), template-based program construction
• Adaptable to the language of the programmer’s choice (e.g.

Java, Fortran, C, C++)
• Supports arrays and data parallelism

Based on a formal computational model (F-Nets), providing leverage
for program verification and powerful debugging techiques & replay

SC: Modules

DO I = 1,10
P = ...

Two kinds of modules:

Both consist of a body, which tells
what to do, and an interface,
which allows it to interact with
its environment B

o
d
y

I
f
a
c
eChip Board

Board body is graphical (like F-Net)

Chip body is written in
your favorite language
(e.g. Fortran)

Interface consists of
pins which carry data
and signals.

SC: Chip Body

A chip’s body is a subprogram or function, and the pins in the chip’s
interface are its arguments.

To change the color of a memory, the chip posts a signal to the pin,
using a special statement of roughly the form:

post signame to pinname

This is the only special statement in your code, and it does not block
or otherwise change the local behavior of the code*

*except f or optionally making the pin ar gument inaccessible

SC: Board Body

1
1

1

1

1

2
22

2
2

33

3

4

5V W X Y Z

wire
socket memory

signal set
posting set

module

SC: Boards are Objects (if you like)

1
1

1

1

1

2
22

2
2

33

3

4

5V W X Y Z

Interface

Method

Instance
Variable

Can be seen as methods (modules in sock ets) which
can be in vok ed by “messages” (signals) thr ough a

encapsulated data .

Classes ar e about using a single object fr om differ ent
call sites? i.e. what about “classes”?

well-defi ned interface to modify and r etur n

SC: Getting Classes

Two operations: instant pre-creates some mems on a
board, and copy clones a board, sharing pre-created

copy

instant
copy copy

instant

instant
Class

Object

Call sites

Instances

mems.

(Share class vars)

(Share instance vars) (Share instance vars)

SC: Arrays

means

Putting hash marks in the left of a memory rectangle means
that it represents an array of memories (# of dims = # marks)

Arrays extend infinitely in every direction.

0 1 2-1

-2
-1
0

3

4
5
6

1
2

SC: Arrays (cont’d)

0 1 2-1

-2
-1
0

3

4
5
6

1
2

=3,5,1

(1),2

A selection, like subscripting, permits a socket to
restrict access to an index or index range in one or
more dimensions.

SC: Arrays (cont’d)

Translation and permutation operate on entire array, to offset array
indices and alter the order of indices (effectively transposing the
array)

=7,-1

+2,1

(2,1)
Flip second & first
indices

Offset second indices
by 7, first by -1

SC: Data Parallelism

For data parallelism, sockets (and therefore modules) are replicated
in SC using the DupAll and DupAny

=1,2

=3,5

*

*

1
2

1
2

1
2

1
2

1
2

1
2

1
2

=1 =1 =1

=3 =4 =5

=3 =4 =5

=2 =2 =2

SC: Array Example w/the works

**
+1 +2

=1,5

(1)
1,2

=1,50=1,50

[1-5]=(1,0),(0,1),(0,0),(0,-1),(-1,0)

Cr eates a 50 by 50 array of sock ets,
offsets B by a differ ent amount in X
and Y f or each, and accesses a cr oss-
shaped stencil fr om B center ed at 0,0

B

-1

1

-1 1

0

0

Elepar’s Three Layers

User’s Application

Traditional Languages,
Tools, Compilers

Visual Component
Construction Language

Portable Communication
Library

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
portable, distributable apps from mod-
ules implemented in traditional langs

Efficiently supports messaging (push),
blackboard/shared (pull), & hybrid
styles on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

PICA: People, Instruments, Comp’s, Archives

Protocols and guidelines for distributed resource discovery, bidding,
(co)scheduling and reservation, and usage/relinquishment

Four principle components:

• Resources: Standard way to specify complex resources
• Resource Companies: Standard way to request, bid for, and/or provide

resources
• Resource Keys (i.e. capabilities): How resources are passed from place

to place
• Resource Supply Chains: Fan-in/Fan-out of complex resources and

payments between suppliers and customers

PICA: Resources

PICA: Resource Companies

PICA: Supply Chain

Overall Summary

True P2P Computing is a BIG problem.

Nothing is wrong with picking the low-hanging fruit, but it’s not clear
that one can get to the ultimate goal via little steps.

High-level languages are here for a reason: To simplify programming
by abstracting the interface, providing portability, amortizing the
programming investment. P2P doesn’t change that.

Characterizing any program based on the architecture it runs on,
whether P2P or anything else, is often a mistake unless one is
intentionally harnessing unique characteristics of that architecture

