Making Peer-to-Peer Computing
Truly Computing Among Peers

David DiNucci, PhD
Elepar: Working Together Independently

dave@l epar.com www. el epar. com

Peer-to-Peer Computing is...

Hype, partly implied by “ Peer-to-Peer” moniker

& =

Current reality (e.g. SETI @home, Intel/UD cancer cure)

'
-

 a—

So for now, only effective on data parallel—i.e. uniform calculations
over huge domains and/or parameter spaces

Slopar

Why Reality != Hype

Asusual, achieving the hypeistoo hard!
 Dynamic topology -> Resour ce discover y/r eservation/scheduling
e Heterogeneous speed/ar chit. -> Portability/Variable granularity
e Local or distributed comm -> L atency tolerance/L ow overhead
 Many decentralized components-> Fault tolerance
« Complex & concurrent -> Formal analysis, debugging rules
o App still #1 -> Leveraging existing tools, languages, techniques
o Utilizing untrusted resour ces -> Privacy/Security/Anonymity

...I.e. all of thehard problems of parallel and distributed computing
over thedecades. (May bereason hardware corp’s so behind P2P!)

|f you had a program with all of thesetraits, wouldn’t you want to be
abletorun it in more environmentsthan just peer-to-peer?

High-Level Plan of Attack...Dataflowish

App is composed of
“Portable threads”
Implemented in your
favorite language.

\ Stateless, atomic

/\ \ --> functional
\ Resources (processors)

found & scheduled via
Node Node Node | pidding and brokers

If multiple communicating
threads end up on same node

(or tightly bound nodes), they
effectively “merge” ovhd-wise

Elepar’s Three Layers

User’s Application
| |

Software Cabling (SC):
L .
Frqrdégf)s?%;lor%, lérages’ ‘ Visual OO component coordination

, Construction Language

| portable, distributable apps from mod-
' ulesimplemented in traditional langs
Portable Communicatio Cooperative Data Sharing (CDS):

Library Efficiently supports messaging (push),
= blackboard/shared (pull), & hybrid
Parald || '3 REOUCE vjes on variety of architectures

Y
or Uni- anagement People, Instruments, Computers, and
processor platform/OS ‘ Archives (PICA): Ryjes and proto-

cols for finding, bargaining for, and
Grid/P2P/Internet scheduling distributed, independently-
controlled resources of all kinds

CDS. Cooperative Data Sharing

History: Early musingsat OGl, prototype implemented and
published at NASA Ames, now under development at Elepar

Approach: Determine common features of shared memory and
message passing, build subroutine interface around those features,
Include other expected features (process control, active messages,
conver sion/mar shalling).

Result: Compared to other communication layers (e.g. MPI, sockets,
DSM), it is:

» Relatively smple/Small
e EXxpressive/Powerful
* Very portableto different uniprocessor & parallel architectures

CDS:. Anatomy of a CDS Process

Comm Ceélls: Logically public set of queues. User is
responsible for creating and deleting.

Comm Heap: Logically private heap. Datais
optimized for communication.

User isresponsible for enlarging
and/or shrinking.

User code & data: Standard

) 1El — Unix process

|

CDS Basic Communication Operations

Comm Heap User Code _ Allocates aregion inthelocal comm heap
rgalloc |~ _{Freesup aregionin thelocal commheap
N rgiree | | " “Copies’ region from |ocal comm heap to ™
- put - endof any cell, optionally freeing region |
1 from heap and/or zapping cell before |
< gt - depositing new region. AKA “write” if cell |
zap A ‘.| zapped, “enq” if not. bput same, but |
| \ . blocks until cell empty and agetiswaiting |

\
[‘Tﬁﬁégf region from beginning of any cell to |
Cdls U . local comm heap, optionally removing it from

cell after. AKA “deq” if removed, “read” if not.

|
L—_ - - - - = J

All opsthat can block (i.e. bput , get , deq andr ead) take atime-out value, and also
“I” versions (i bput , 1 get ,i deq,andi r ead, respectively), resolved withawai t op.

“Copy” operation isvirtual (i.e. usually copy on write), so these are usually just pointer
ops. For portability, r gnod must be called before modifying any potentially-shared rgn

CDS:. Logical View

CDS:. Physical View on 3 Nodes

daemon

Node 3

_

CDS:. Other Functionality

Process | nitiation/Active Messages (“Handlers’)

High and low water marks can be set on each cell

A “handler” function can be chosed to be invoked each time that
water mark is exceeded.

Copying/M ar shalling/Conver sion

Although process can access regionsin comm heap directly,

“copyf nt,“copyt 0” routinesexist to pack, unpack, and/or convert
data asit isbeing moved to or from region, based on internally-
supported conversion tables.

CDS Shared Mem & Msg Passing “Macros’

engingregion ~=releasing alock, deqing region ~= acquiring a lock.

“Macro” Meaning Translates Into
acqw Acquire write lock deq, rgnod
risw Release write lock wite, rgfree
acqr | Acquire read lock r ead
rlisrl Release read lock rgfree
W 2r | Write lock -> read lock wite

M sg passing includes copy to/from comm heap, can be optimized out.

“Macro” Meaning Semantically identical to
send Send message rgalloc, copyto, enq, rgfree
recv Receive message deq, copyfm rgfree
sendx Destructive send rgal |l oc, copyto, wite, rgfree
recvx Non-destructive receive read, copyfm rgfree
bsend Synchro or ready send | rgal |l oc, copyto, bput, rgfree

Corresponding“1” ops:. 1 acqrl ,iacgwl ,irecv,i recvx,i bsend

Comparing CDS Featureset

Features

w TN
200

i—t"ﬁz
~AOOWw

> Z—r

Some data can be traded/shared in place (true 0 copy!)

Consumer can pull (get) data from passive producer

Consumer can prefetch/prepull data to hide latency

Producer can push (send) data to passive consumer

Data can be queued at producer waiting for pull

Pushed data can be made to overwrite previous value

Producer can retain access rights to comm’d data

Producer can relinq access rights to comm’d data

Dynamic memory allocation for shared memory

Consumer can specify timeout for waiting

Supports heterogeneous platforms

Simplicity (~number of function + macro interfaces)

51

20

"

The CDS Interface

Managing comm heap and contexts/cells
rgall oc rgnodrgfree rgsizergreall oc
addcnt xt del cnt xt grwent xt
Communication Primitives
read deq benqg eng wite zap engm witem
Iread ideq I beng wait waitm i engm bengm
Copying and Trandlation
copyto copyfm copytof mtranstab
Composite functions (shared mem and msg passing)
recv bsend recvx send sendx sendm sendxm
acgrl acgwl rlsrl rlsw w 2rl
lrecv 1 bsend irecvx i1acqgrl 1acqw
Process and thread control
enlist init nyinfo hdlr prior

Elepar’s Three Layers

User’s Application
| |

Software Cabling (SC):
L .
Frqrdégf)s?%;lor%, lérages’ ‘ Visual OO component coordination

, Construction Language

| portable, distributable apps from mod-
' ulesimplemented in traditional langs
Portable Communicatio Cooperative Data Sharing (CDS):

Library Efficiently supports messaging (push),
= blackboard/shared (pull), & hybrid
Parald || '3 REOUCE vjes on variety of architectures

Y
or Uni- anagement People, Instruments, Computers, and
processor platform/OS ‘ Archives (PICA): Ryjes and proto-

cols for finding, bargaining for, and
Grid/P2P/Internet scheduling distributed, independently-
controlled resources of all kinds

SC: Software Cabling

CDSlaysthe groundwork for creating apps as collections of small,
portable, sequential threadswhich can be stateless and atomic.

SC isavery-high-level graphical component composition language
which leverages CDS communication style. It containsthe necessary
constructsto makereal-world programming possible: e.g.

. Modular (O0), template-based program construction

. Adaptableto the language of the programmer’s choice (e.g.
Java, Fortran, C, C++)

. Supportsarrays and data parallelism

Based on a formal computational model (F-Nets), providing leverage
for program verification and powerful debugging techiques & replay

SC: Modules

Both consist of a body, which tells

what to do, and an interface,
which allows it to interact with

Two kinds of modules: \

its envir onment Ig
\
Board body is graphical (like F-Net) (d
y
Chip body iswritten in DO = 1,10
your favorite language P=...

(e.q. Fortran) ——

| nter face consists of [TTTT1 [TTTITT] >
pinswhich carry data 7
and signals. Chip Board

SC: Chip Body
A chip’sbody isa subprogram or function, and the pinsin thechip’s

Interface are its arguments.

To changethe color of a memory, the chip postsa signal to the pin,
using a special statement of roughly the form:

post signame to pinname

Thisisthe only special statement in your code, and it does not block
or otherwise changethelocal behavior of the code*

*except f or optionally making the pin ar gument inaccessible

SC: Board Body

sock et memory posting set
wire | module \ S|gnal set

\ l v
\ : 0 , e
g Ws ;

A . 3 11 /4

1 4

|QO ‘I.

SC: Boards are Objects (if you like)

Canbeseenas methods (modulesinsock ets) which

can bein voked by “messages’ (signals)thr ougha
tomodifyandr etur n

well-defi ned interface
encapsulated data
| nstance
Variable —=
1

Method i \: 3\ i 2
O ®, ®, 00,
Interface 1 i Jro

T [

Classesar e about using a single object fr om differ er

call sites? 1.e. what about “ classes’ ?

SC: Getting Classes

Two operations. i nst ant pre-creates some memson a
board, and copy clonesa board, sharing pre-created

mems. M O oo
OQ O 0.Q Class
i nstant /24, 4 =44
/copy\
Qo R = 7 Object Instances
OO0 O 0O

O0Q O 0.0
L V737 S G Vs Y </ . T (Shareclassvars)

i nst ant'/ i nst ant\
e COpy W m

i}:ﬂ 1] O™ QI:I — |:I [—
OO O 0O QO Oi) O O O O Q O O O
‘:':‘é%':":'] I—éﬁEIIZD |—|—||—£1F‘I:||—r| |—|—||—£1F‘I:||—r|
(Shareinstance var S) (Shareinstance vars)

Call sites

SC: Arrays

Putting hash marks in the left of a memory rectangle means
that it represents an array of memories (# of dims = # marks)

Arrays extend infinitely in every direction.
-1 0 1 2

o 01 b WMNEFE O L

T means

SC: Arrays (cont’ d)

A selection, like subscripting, permits a socket to
restrict access to an index or index range in one or
more dimensions.

SC: Arrays (cont’ d)

Trangation and per mutation oper ate on entire array, to offset array
Indices and alter the order of indices (effectively transposing the
array)

Flip second & first
indices -+ (2, 1)

Offsat second indices
:I: I by 7, by

SC: Data Parallelism

For data parallelism, sockets (and ther efore modules) arereplicated

In SC using the DupAll and DupAny
:1,2 =1 =1 =1

" a

=3 =4 =5
17,

=3, 5 =2 =2 =2
s S
=3 =4 =5

SC: Array Example w/the works

-+ [1-5]:(1,0),(0,1),(\0,0),(0,-1),(-1,0)

\

\ -7 =

27210 1

/ \
/ -1 \
| \
\ 0 /
\ /
\\ 1 //
=1, 50 l =1, 50 Tt
- B

Cr eatesa 50 by 50 array of sock ets,
offsets B by a differ ent amount in X
and Y for each, andaccessesacr 0ss
shaped stencil fr om B center ed at 0,0

Elepar’s Three Layers

User’s Application
| |

Software Cabling (SC):
L .
Frqrdégf)s?%;lor%, lérages’ ‘ Visual OO component coordination

, Construction Language

| portable, distributable apps from mod-
' ulesimplemented in traditional langs
Portable Communicatio Cooperative Data Sharing (CDS):

Library Efficiently supports messaging (push),
= blackboard/shared (pull), & hybrid
Parald || '3 REOUCE vjes on variety of architectures

Y
or Uni- anagement People, Instruments, Computers, and
processor platform/OS ‘ Archives (PICA): Ryjes and proto-

cols for finding, bargaining for, and
Grid/P2P/Internet scheduling distributed, independently-
controlled resources of all kinds

PICA: People, Instruments, Comp’s, Archives

Protocols and guidelinesfor distributed resour ce discovery, bidding,
(co)scheduling and reservation, and usage/r elinquishment

Four principle components:

» Resources:. Standard way to specify complex resources
» Resource Companies. Standard way to request, bid for, and/or provide

resources
» Resource Keys(i.e. capabilities): How resources are passed from place

to place
» Resource Supply Chains. Fan-in/Fan-out of complex resources and

payments between suppliers and customers

PICA: Resources

- - - - _
- -

- =

- -

r; Cormplex -
-.i. (Collecton of resources) Personnel
Eezource Instmment Robote
(Exists in space for given trne) Fepository
Channel
(Connects nstuments) Compute
Arbitrary Besource
i Examples of assorted Personnel Instrument
Physical layer Instrument Resources Screen, keyboard, spkes, mic
Interface layer . Windowing system
""""""""" [Robotic Instnument e
Interface layer

Peripheral or device hardwrare Widget set'spchrecog

Semantic layer (core)

Internal Crivers Human Being

D T : Downloaded corrnands N i
Repositony Instryment Commpute Instroment
Chamne] Besource . - ;
Cisk develembedded prosse CPU, merm, temp disk, cards
Memwork hardware - -
File management system Orperating system
Transport protocols T hE SRR AR e : e .
———————— : : CBLS i i| IntepretesDLL/TWRA |,
! Doara ; | | Stored data + schemal | (|| Frocessifpplet :

PICA: Resource Companies

CNE: RCDP
A B. :QE 4

RC Negotiation RC Delivery
Protocol (RCNP) Protocol (RCDP)

l T

Resource Company

Resowce
Manager

IIRE“I.II
Resowce

RCNP RCDP CNP, RCDP
C. D.

Resowce
Manager

Resowce
Inventory

i

Resowce
Company

PICA: Supply Chain

X,
o ';IF

ED EU EIl EU ETI

BSIAN)

ANy m__ﬂwd» .
: ifpe
1] 5

g PR
m”,fwwvm

ETI

Overall Summary

True P2P ComputingisaBIG problem.

Nothing iswrong with picking thelow-hanging fruit, but it’snot clear
that one can get to the ultimate goal via little steps.

High-level languagesareherefor areason: Tosimplify programming
by abstracting the interface, providing portability, amortizing the
programming investment. P2P doesn’t change that.

Characterizing any program based on the architectureit runson,
whether P2P or anything else, is often a mistake unlessoneis
Intentionally harnessing unique characteristics of that architecture

