
Distributed Resource Collectives
(P2P & Grids)

Simplicity + Portability = Success

David C. DiNucci, PhD
dave@elepar.com www.elepar.com

Overview

Overview/History

Big Picture
• Social and Technical Challenges
• Concepts
• Architecture

Architectural Layers
• Distributed Resource Management: PICA
• Portable Communication and Threads: CDS
• Component Assembly and Scope Management: SC

Conclusion

History

1985-91: PhD at OGI, “F-Nets”, formal model for architecture-
independent parallel software engineering”, F-nets,
refinement/formalization of advisor Babb’s LGDF

91: Created Software Cabling based on F-nets, postdoc at
LLNL NERSC

91-96: Parallel tools group at NASA Ames NAS (prototyped CDS)

96-98: Planning for NASA Info Power Grid, led “Distributed
Architectures and Scheduling” team (members included
Fran Berman, Andrew Grimshaw, Ian Foster, Carl
Kesselman, Bill Nitzberg, see PICA page for more)

98-present: Elepar commercializing this work (Beaverton in ‘99)

Technical Challenges: P2P and Grids

• Dynamic topology -> Resource discovery/reservation/scheduling
• Heterogeneous speed/archit. -> Portability/Variable granularity
• Local or distributed comm -> Latency tolerance/Low ovhd/QoS
• Many decentralized components -> Fault tolerance
• Complex & concurrent -> Formal analysis, debugging rules
• App still #1 -> Leveraging existing tools, languages, techniques
• Utilizing untrusted resources -> Privacy/Security/Anonymity
• ROI -> Revenue models, pricing, bidding, accounting
• Connectivity -> Firewalls, NATs, dropped lines
• Intellectual property -> digital watermarking & rights mgmt
• Multiple administrative domains -> flexible policies

Elepar’s summary: “Performance, Portability, Programmability”
(After solving these, standardization.)

Social Challenges: Peer-to-Peer vs. Grids

Peer-to-Peer Grid
People Sales, marketing,

analysts, hobbyists
Researchers, scientists,
engineers, designers

Archives Documents, sales,
music, game state

Scientific, design,
historical databases

Compute PCs, PDAs Parallel servers, supers
Peripherals GUIs, personal

devices, printers
CAD, immersive VR,
sensory, robotic devices

Economy Cheaper (conserve
in existing practice)

Bigger (enable new
capability/approach)

Motivators Data access, privacy,
autonomy, indep.

Capacity availability,
scalability, efficiency

Dynamics Assemble, disband Utility, grow & shrink

Solutions: Elepar’s Approach

One fully-supported set of architectural layers (3)
• Each tackles different parts of the overall problem
• Independent, but built to work well together
• Can be individually replaced or omitted

Manage complexity, allow technical objectives to guide the design.

Important concepts:
• Abstract Resources (people, instruments, computers, archives)
• Resource Companies (entities which deal in those resources)
• Portable threads (cooperative data sharing)
• Scope management (who needs to know what, who doesn’t)
• Compupackets (dataflow), resource cloud, atomic transactions
• Modules as objects, programs as modules (e.g. multi-disciplinary)

Solutions: Architectural Layers

User’s Application

Traditional Languages,
Tools, Compilers

assembly, load balancing

Portable & Secure

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
dataflow/“indep thread” apps from

modules implemented in trad’l langs

Efficient runtime support for portable
threads and communication between
them, on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

Comm. & Threads

SE, fault tol., component

Distributed Resource Mgmt Layer: PICA

PICA stands for People, Instruments, Computers, and Archives

PICA is a set of protocols & guidelines for how distributed resources
look & act with respect to discovery, bidding, (co)scheduling,
reservation, acquisition, and relinquishment.

Four principle components:
• Resources: Standard way to specify complex resources (P, I, C, A)
• Resource Keys (i.e. capabilities): How resources are referenced, and

how those references are passed from place to place
• Resource Companies: Standard way to request, bid for, and/or pro-

vide access to resources (symbolized as resource keys)
• Resource Supply Chains: Fan-in/Fan-out of complex resources and

payments between suppliers (i.e. resource companies) & end users

PICA: Resource Classes

There are three kinds of resources:
1.Instrument: Lies in a particular region of spacetime; creates, con-

sumes, or transforms data/information
2.Channel: Moves data/info in space and/or time
3.Complex: Collection of instruments, usually networks of above

Instruments, in turn, are either:
1.Human: Interface to human intelligence
2.Robotic: A peripheral, meant to sense/alter “the outside world”
3.Repository: Preserves and/or retrieves data/information
4.Compute: Automata to create &/or transform data/information

Resource

Complex
Instrument
Channel

Human
Robotic
Repository
Compute

{{

PICA: Instruments, Channels, and Tasks

Instruments and channels are layered: A physical layer; interface
(or abstraction) layers provide virtualization; innermost semantic
core is ultimate (abstract) behavior (“program”, or data channeled).
Different instruments can share some outer layers. “Task” is defined
as those inner layers specified by user, after resource allocation.

Semantic core

Interface layer
Physical layer

Interface layer

Resource

Data

Protocol stack layer
Network Hardware

Protocol layer

Channel

User commands

Device Hardware
Embedded drivers

Robotic Instrument

and/or data

Data+Schema

File mgmt system
Physical Media

DBMS

Repository Inst.

Process/Applet

Operating System
CPU, mem, temp space

Interp/Runtime

Compute Instrument

Human Being

Windowing System
Screen/keybd/speakers
Human Instrument

Widgets/Spch rec.

Examples

PICA: Resource Companies

To get a resource, one goes
to a Resource Company
(RC). An RC may simply
provide a “raw resource”,
or may compose simpler
resources it obtains (from
other RCs) into complex, or
may just optimize resource
flow from other RCs by
acting as “retailer” or

“RC Negotiation Protocol”
standard way to discover &

“broker”.

request resources from RCs.

Co-scheduling is an auto-
matic byproduct.

Sales
Rep

Resource Company

RC negotiation
protocol

RC Delivery
protocol

(RCNP) (RCDP)

RCNP RCDP

Delivery
Rep

Resource
Manager

RC RC RC RC

Resource
Manager

Resource
Inventory

RCNP RCDP

Resource
Manager

Resource
“Raw”

RCNP RCDP

PICA: Supply Chain

EU EUEU EU EU EUEU EUEU EU EUEU

RC RCRC RC RC RCRC RCRC RC RCRC

RC RCRC RC RC RCRC RCRC RC RCRC

RC RCRC RC RC RCRC RCRC RC RCRC

EU EUEU EU EU EUEU EUEU EU EUEU

RC RCRC RC RC RCRC RCRC RC RCRC

RC RCRC RC RC RCRC RCRC RC RCRC

RC RCRC RC RC RCRC RCRC RC RCRC

EU

RC

RC

RC

EU

RC

RC

RC

Even limited RC connectivity allows a single end-user to obtain
resources containing “parts” from many different “suppliers”...

while many end-users obtain them w/parts from a single supplier.

Reverse arrows and it’s payments & billing without micropayments.

Solutions: Architectural Layers

User’s Application

Traditional Languages,
Tools, Compilers

assembly, load balancing

Portable & Secure

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
dataflow/“indep thread” apps from

modules implemented in trad’l langs

Efficient runtime support for portable
threads and communication between
them, on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

Comm. & Threads

SE, fault tol., component

Portable Comm & Threads Layer: CDS

CDS (Cooperative Data Sharing) blurs distinction between proc &
thread, blends the semantics & advantages of MP and DSM, includes
support for process control, active messages, conversion/marshalling.

Thr eads Msg passing DSM CDS

push pull

t1 t2 t1 t2 t1 t2 t1 t2

data
da ta da ta

da tapush
pull

Low overhead

All data must be
held in common
or shared memory

Latency hiding
Queuing
Data translation

Copy overhead
always suffered

No extra copy
Latency hiding
Queuing
Data translation
No extra copy

Pros:Pros:

Cons:

Cons:
Cons:

Pros:Pros:

No latency hdg
No queuing
No data translation
Mem mgmt req’d? No mem mgmt

CDS: Featureset

Features
C
D
S

D
S
M

M
P
I

S
O
C
K

L
I
N
D
A

Some data can be traded/shared in place (true 0 copy!) x x

Consumer can pull (get) data from passive producer x x 2 x

Consumer can prefetch/prepull data to hide latency x ? 2

Producer can push (send) data to passive consumer x x x ?

Data can be queued at producer waiting for pull x x x ?

Pushed data can be made to overwrite previous value x x x

Producer can retain access rights to comm’d data x 2 x

Producer can relinq access rights to comm’d data x x x x

Dynamic memory allocation for shared memory x ?

Consumer can specify timeout for waiting x ?

Supports heterogeneous platforms x x

Simplicity (~number of function + macro interfaces) 51 20 !!! 13 5

CDS: Compute Entity (CCE) Anatomy

Comm Cells: Logically global set of queues. User is
 responsible for creating and deleting.

Comm Heap: Can be treated like standard
heap: i.e. malloc, free. Holds data
on its way to or from a Comm Cell.
User is responsible for enlarging
and/or shrinking.

User code & data: Standard
Unix process

get and put move data
between comm heap & any
comm cell.

(or thread!)

CDS: Basic Communication Operations

Comm Heap User Code

rgalloc

rgfree

put

get

zap

Frees up a region in the local comm heap

Allocates a region in the local comm heap

“Copies” region from local comm heap to
end of any cell, optionally freeing region
from heap and/or zapping cell before
depositing new region. AKA “write” if cell

“Copies” region from beginning of any cell to
local comm heap, optionally removing it from
cell after. AKA “deq” if removed, “read” if not.

Comm
Cells
(Any
CCE)

“Copy” operation is virtual (i.e. usually copy on write), so these are usually just pointer

blocks until cell empty and a get is waiting

All ops that can block (i.e. bput, get, deq and read) take a time-out value, and also
“i” versions (ibput, iget, ideq, and iread, respectively), resolved with a wait op.

ops. For portability, rgmod must be called before modifying any potentially-shared rgn.

zapped, “enq” if not. bput same, but

CDS: As General-Purpose API

CDS offers very general concurrent programming support,
addressing many current challenges in parallel and distributed
computing—e.g.

• Programming heterogeneous architectures (e.g. clusters of SMPs)
• Making applications more portable between distributed and/or

shared memory and/or uniprocessor architectures
• Providing a much simpler programming interface than MPI-2

while offering similar (or greater, in some cases) functionality
• Providing a common API capable of leveraging the power of

newer transport protocols like VIA and InfiniBand

Elepar’s current CDS product is called “BCR”, built upon SysV
shared memory segments, UDP/IP, and custom locking protocols

CDS: The Interface (C Binding)

Managing comm heap and contexts/cells
rgalloc rgmod rgfree rgsize rgrealloc

addcntxt delcntxt grwcntxt

Communication Primitives
read deq benq enq write zap enqm writem

iread ideq ibenq wait waitm ienqm benqm

Copying and Translation
copyto copyfm copytofm transtab

Composite functions (shared mem and msg passing)
recv bsend recvx send sendx sendm sendxm

acqrl acqwl rlsrl rlswl wl2rl

irecv ibsend irecvx iacqrl iacqwl

Process and thread control
enlist init myinfo hdlr prior

Solutions: Architectural Layers

User’s Application

Traditional Languages,
Tools, Compilers

assembly, load balancing

Portable & Secure

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
dataflow/“indep thread” apps from

modules implemented in trad’l langs

Efficient runtime support for portable
threads and communication between
them, on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

Comm. & Threads

SE, fault tol., component

SE/LB/FT Layer: Software Cabling (SC)

Software Engineering goals:
• Manage (i.e. determine/dictate scope of) data, events, side-effects
• Provide straightforward semantics (declarative or functional)

that can be used to reason abstractly in dynamic, hetero env.
• Components, templates, & OO: To manage complexity and ease

construction, from simple tasks to multi-disciplinary systems

Execution-based goals:
• Fault tolerance, through atomic transactions
• Efficient resource use by commoditizing usage—i.e. load

balancing generic transactions
• Latency hiding & bandwidth preservation via split transactions,

understanding potential producers & consumers of information

SC: “CompuPackets” (Dataflow)

1

2

3 4

4

3

1

2

Message is indep packets

Packets independently use
BW to get to destination

1 3 42

Re-interpret packets as msg

Traditional Packet Switching “Compu-Packet Switching”

Program is “indep” threads, init data

“Compupacket”

Compupackets independently use
cycles to run, create new data

(e.g. for new c’packets).

Interpret as computation DAG+results

1 2 3 4

1 3

2

1
3

2

Resource cloud
BW cloud

+...)
(BW+cycles

= thread+its data.

SC: The Three Layers Revisited

Ar chi ve

Data ServerCompute ServerDiskless Server

Pr ogram I/O

Raw resources (Machines, disks, networks, etc.)
Common execution/communication/security env.
Stateless (non-executing) program fragment
State (i.e. data item or region)
Executing (or execute-ready) “compupacket”

PICA
CDS

Software
Cabling{

Tool Role

(Program + Data = atomic transaction)

Notation

SC: Advantages/Challenges of Dataflow

Advantages:
• Compackets indep, either run or don’t: No waiting for each other
• Compupackets fill up processors like pebbles into bucket,

efficiently using whatever cycles are available
• Compupackets, as atomic transactions, facilitate fault tolerance
• Each compupacket is functional, easy to specify & reason about

Challenges:
ready compupackets should be large (> # available processors)

• Need methods to build programs in this form (w/existing langs)
• Binding data to compupacket and initiating it must be low ov’h’d
• Link latency must be hidden or avoided when possible
• Need strategies for compupacket binding, processor assignment

SC: From Program to (Portable) Threads

Making multi-threaded apps or parallelizing compilers is tough, BUT
• virtually all programs are built from smaller components (i.e.

functions, subroutines, methods, etc.)
• if side-effect free, they already act like compupackets—i.e. they

begin with their input data, run to completion creating results
• so, facilitate concurrent composition, manage scope of side-effects

program in
trad’l lang

MAGIC!

t1 t4t3t2

program in new
parallel lang

Less MAGIC

t1 t4t3t2

MAGIC Done

t1 t4t3t2

prog explicitly
multi-threaded

SC: Concurrent Composition, Scoping

Software Cabling uses CDS-style comm to compose modules written
in one or more traditional languages (e.g. C, C++, Fortran, Java).

• Programmer explicitly manages of scope of side-effects (e.g. data
access/flow) between modules using the concept of “cabling”

• Execution order is purely event driven, facilitating concurrency
• To capture all potential module interactions, a schematic-like

visual syntax (and accompanying CASE tools) supported
• Constructs facilitate hierarchical composition, templates, OO,

data parallelism, distributed mem alloc, distributable arrays

So, SC good for single app, multi-disciplinary, & mission-critical SE:
• Formal, functional specifications provide leverage for program

spec, verification, and powerful debugging techiques & replay
• Fault tolerance (because compupackets are atomic transactions!)

SC: 20,000ft View

DO I = 1,10
P = ...

Two kinds of modules:

Both consist of a body, which tells
what to do, and an interface,
which allows it to interact with
its environment B

o
d
y

I
f
a
c
eChip Board

Board body is graphical (think schematic)

Chip body is written in
your favorite language
(C++, Java...Fortran?)

Interface consists of
pins which carry data
and signals. (Correspond
closely to CDS regions, cells.)

SC: Chip Body

A chip’s body is a subprogram or function, and the pins in the chip’s
interface are its arguments. The only syntax extensions are:

1. An interface definition language (IDL) to define interface

2. A “signal” statement, effectively a “return” that allows one
argument at a time to be returned—roughly of the form:

post signame to pinname

Unlike locking primitives or message receipts, it does not change the
local behavior of the code*. So, the programmer uses a purely
sequential, traditional mindset when implementing components.

*except f or optionally making the pin ar gument inaccessible

Summary

Elepar breaks the problems of distributed resource collectives (e.g.
P2P & Grids) down into:

• Distributed Resource Management: PICA
• Portable threads and safe and efficient communication: CDS
• Component/OO-based SW construction and fault tolerance: SC

Each is based on a sound technical approach. Each is made to work
with the others, but can be modularly replaced. CDS is available now
in demo form (on Elepar website), info on other tech also there.

Elepar is happy to discuss consulting, collaboration, and investment
arrangements to help others leverage this technology.

