Distributed Resour ce Collectives
(P2P & Grids)
Simplicity + Portability = Success

David C. DiNucci, PhD
dave@el epar. com www. el epar. com

Overview

Overview/History

Big Picture
« Social and Technical Challenges
e Concepts
o Architecture

Architectural Layers
» Distributed Resource Management: PICA
e Portable Communication and Threads: CDS
o Component Assembly and Scope Management: SC

Conclusion

History

1985-91: PhD at OGI, “F-Nets’, formal model for architecture-
Independent parallel software engineering”, F-nets,
r efinement/formalization of advisor Babb’s L GDF

o1. Created Software Cabling based on F-nets, postdoc at
LLNL NERSC

91-96. Paralld toolsgroup at NASA Ames NAS (prototyped CDS)

96-98: Planning for NASA Info Power Grid, led “ Distributed
Architectures and Scheduling” team (membersincluded
Fran Berman, Andrew Grimshaw, |an Foster, Carl
Kesselman, Bill Nitzberg, see PICA page for more)

08-present: Elepar commercializing thiswork (Beaverton in ‘99)

Slopar

Technical Challenges: P2P and Grids

 Dynamic topology -> Resour ce discovery/r eser vation/scheduling
» Heter ogeneous speed/ar chit. -> Portability/Variable granularity
e Local or distributed comm -> Latency tolerance/L ow ovhd/QoS
 Many decentralized components -> Fault tolerance

 Complex & concurrent -> Formal analysis, debugging rules

o App still #1 -> L everaging existing tools, languages, techniques
« Utilizing untrusted resour ces -> Privacy/Security/Anonymity
 ROI -> Revenue models, pricing, bidding, accounting

o Connectivity -> Firewalls, NATSs, dropped lines

 Intellectual property -> digital watermarking & rights mgmt

o Multiple administrative domains-> flexible policies

Elepar’ssummary: “Performance, Portability, Programmability”
(After solving these, standardization.)

Social Challenges: Peer-to-Peer vs. Grids

Peer-to-Peer

Grid

People Sales, marketing, Researchers, scientists,
analysts, hobbyists |engineers, designers
Archives |Documents, sales, |Scientific, design,
music, game state | historical databases
Compute |PCs, PDAs Parallel servers, supers
Peripherals | GUISs, personal CAD, immersive VR,
devices, printers sensory, robotic devices
Economy |Cheaper (conserve |Bigger (enable new
in existing practice) |capability/approach)
Motivators |Data access, privacy, | Capacity availability,
autonomy, indep. |scalability, efficiency
Dynamics |Assemble, disband | Ultility, grow & shrink

Solutions: Elepar’s Approach

One fully-supported set of architectural layers (3)
« Each tacklesdifferent partsof the overall problem
 |ndependent, but built to work well together
e Can beindividually replaced or omitted

M anage complexity, allow technical objectivesto guide the design.

| mportant concepts:

o Abstract Resources (people, instruments, computers, archives)

» Resource Companies (entitieswhich deal in those resour ces)
Portable threads (cooper ative data sharing)
Scope management (who needsto know what, who doesn’t)
Compupackets (dataflow), resour ce cloud, atomic transactions
M odules as objects, programs as modules (e.g. multi-disciplinary)

Solutions. Architectural Layers

‘ User’s Application ‘
Software Cabling (SC):
|'Trad|t|onal L anguages, “ﬁsual OO component coordination

Tools, Compilers methodology for building & analyzing

SE, fault tol., component dataﬂovv_/“ Indep threaql” apps from
»assembly, load balancings modules implemented in trad’| langs

Portable & Secure A+ Cooperative Data Sharing (CDS):

Comm. & Threads Efficient runtime support for portable

oo threads and communication between
- them, on variety of architectures

Parallgl Management em, on variety Itectu

or Uni- People, Instruments, Computers, and

processor platform/OS | Archives (PICA): Ryjjes and proto-

cols for finding, bargaining for, and
Grid/P2P/Internet scheduling distributed, independently-
controlled resources of all kinds

Distributed Resource Mgmt Layer: PICA

PICA standsfor People, Instruments, Computers, and Archives

PICA isaset of protocols & guidelinesfor how distributed resources
look & act with respect to discovery, bidding, (co)scheduling,
reservation, acquisition, and relinquishment.

Four principle components:

» Resources. Standard way to specify complex resources (P, I, C, A)

* ResourceKeys(i.e. capabilities): How resour cesarereferenced, and
how those refer ences are passed from place to place

* Resource Companies. Standard way to request, bid for, and/or pro-
vide access to resour ces (symbolized asresour ce keys)

» Resource Supply Chains. Fan-in/Fan-out of complex resour cesand
payments between suppliers (i.e. resour ce companies) & end users

PICA: Resource Classes

Therearethree kinds of resour ces:

1.Instrument: Liesin aparticular region of spacetime; creates, con-
sumes, or transforms data/infor mation

2.Channdl: Moves data/info in space and/or time

3.Complex: Caoallection of instruments, usually networks of above

| nstruments, In turn, are elther:

| nter face to human intelligence

A peripheral, meant to sense/alter “the outside world”
. Preserves and/or retrieves data/infor mation

Automatato create &/or transform data/infor mation

ef_hﬁplex
Resour ce | nstrument

Channel

H~wWhN

PICA: Instruments, Channds, and Tasks

|nstruments and channelsare layered: A physical layer; interface
(or abstraction) layers provide virtualization; innermost semantic
coreisultimate (abstract) behavior (“program”, or data channeled).

Different instruments can share some outer layers. “ Task” isdefined
asthose inner layers specified by user, after resource allocation.

Plll:afisccz)nijll;lcfr :"’ Examples Human Instrument

o terace la‘\lfer : Robotic Instrument Screen/key.bd/speakers
e 111 : Device Hardware Windowing System
| Interface laver |11 [T Embedded drivers Vidoets/Soch recl
| Gemantiecore1 [|| || roercommenss Iyl
— d11: and/or data | !

T Channel ") Repository Inst. Compute Instrument

Network Hardware Physical Media CPU, mem, temp space
Protocol stack laver File mgmt system Operating System
Il Protocol layer [I DBMS ! !
|[__Data | | [Data+Schemal] | :

PICA: Resource Companies

To get aresource, one goes
to a Resour ce Company
(RC). An RC may ssmply
providea“raw resource’,
or may compose simpler
resourcesit obtains (from
other RCs) into complex, or
may just optimize resource
flow from other RCs by
acting as“retailer” or
“broker”.

“RC Negotiation Protocol”
standard way to discover &

request resour cesfrom RCs.

Co-scheduling isan auto-
matic byproduct.

RCNP RCDP

v N

RC negotiation RC Deliveryi
protocol :
(RCNP)

protocol
(RCDP)

Resource Company I

Resource
Manager

“Raw”
Resourc

RCNP RCDP

N W

Resource
Manager

Resource}l

Inventor

PICA: Supply Chain

Even limited RC connectivity allows a single end-user to obtain
resour ces containing “parts’ from many different “ suppliers’...

EU
TXTXTXTXTXTg{F&&gﬁXTXTXTXT

while many end-user s obtain them w/parts from a single supplier.
EU EU EU EU EU EU EU EU EU EU EU EU EU

o T A A A A A
e et

Ry e

Solutions. Architectural Layers

‘ User’s Application ‘
Software Cabling (SC):
|'Trad|t|onal L anguages, “ﬁsual OO component coordination

Tools, Compilers methodology for building & analyzing

SE, fault tol., component dataﬂovv_/“ Indep threaql” apps from
»assembly, load balancings modules implemented in trad’| langs

Portable & Secure A+ Cooperative Data Sharing (CDS):

Comm. & Threads Efficient runtime support for portable

oo threads and communication between
- them, on variety of architectures

Parallgl Management em, on variety Itectu

or Uni- People, Instruments, Computers, and

processor platform/OS | Archives (PICA): Ryjjes and proto-

cols for finding, bargaining for, and
Grid/P2P/Internet scheduling distributed, independently-
controlled resources of all kinds

Portable Comm & ThreadsLayer: CDS

Thr eads M sg passing DSM CDS

- pushl + | pull |+
- "
Pros: Pros: el

Pros. Latency hiding No extra copy Pros.
Low overhead Queuing Cons: Latency hiding
Cons: Data trandlation No | ate%ré?/ hdg Queuing
All data must be Cons: NO queving Datatrandslation
held in common Copy overhead No data translation No extra copy
or shared memory aways suffered \1am mgmt req d? No mem mgmt

CDS (Cooperative Data Sharing) blursdistinction between proc &
thread, blendsthe semantics & advantagesof MP and DSM, includes
support for process control, active messages, conver sson/mar shalling.

CDS. Featureset

Features

w N
200

i—l"ﬁz
~ANOOWw

>0 Z—~r

Some data can be traded/shared in place (true 0 copy!)

Consumer can pull (get) data from passive producer

Consumer can prefetch/prepull data to hide latency

Producer can push (send) data to passive consumer

Data can be queued at producer waiting for pull

Pushed data can be made to overwrite previous value

Producer can retain access rights to comm’d data

Producer can relinq access rights to comm’d data

Dynamic memory allocation for shared memory

Consumer can specify timeout for waiting

Supports heterogeneous platforms

Simplicity (~number of function + macro interfaces)

CDS:. Compute Entity (CCE) Anatomy

Comm Ceélls: Logically global set of queues. User is
responsible for creating and deleting.

Comm Heap: Can be treated like standard
heap: i.e. mal | oc, f r ee. Holds data
on itsway to or from a Comm Cell.
User isresponsible for enlarging

and/or shrinking.
----- User code & data: Standard
Unix process
(or thread!)

between comm heap & any

= p

get and put move data
comm cell.

|

CDS:. Basic Communication Operations

Comm Heap User Code

rgalloc |~ ‘Freesuparegion i the focal comn heap’
N e " ~Copies’ region from local comm Reapto ™ |
B put - _ 1 end of any cell, optionally freeing region

1 from heap and/or zapping cell before
< gt - depositing new region. AKA “write” if cell
zaio A ‘1 zapped, “eng” if not. bput same, but

\

‘L)
(o DHOCKs UL CEIL ETPLY iU a Jet 1S Wil

\
f“tﬁﬁ es” region from beginning of any cell to |

Comm : L7

Cdls . local comm heap, optionally removing it from
(Any \i— | cell after. AKA “deq” if removed, “read” if not.
CCE) - L - - - = — - — — — = = — — = — — — — — a

All opsthat can block (i.e. bput , get , deq andr ead) take atime-out value, and also
“I” versions (i bput , i get ,i deq,andi r ead, respectively), resolved withawai t op.

“Copy” operation isvirtual (i.e. usually copy on write), so these are usually just pointer
ops. For portability, r gnod must be called before modifying any potentially-shared rgn

CDS. As General-Purpose AP

CDS offersvery general concurrent programming support,
addressing many current challengesin parallel and distributed
computing—e.g.

* Programming heter ogeneous ar chitectures(e.g. clusters of SMPs)

« Making applications more portable between distributed and/or
shared memory and/or uniprocessor architectures

* Providing a much smpler programming interface than MPI -2
while offering ssimilar (or greater, in some cases) functionality

* Providing acommon API capable of leveraging the power of
newer transport protocolslike VIA and InfiniBand

Elepar’scurrent CDS product iscalled “BCR”, built upon SysV
shared memory segments, UDP/IP, and custom locking protocols

CDS:. Thelnterface (C Binding)

M anaging comm heap and contexts/cells
rgalloc rgnod rgfree rgsize rgrealloc
addcnt xt del cnt xt grwcnt xt
Communication Primitives
read deq benqg eng wite zap engm witem
iread i1deqg i1beng wait waitm iengm bengm
Copying and Trandation
copyt o copyfm copytof mtranstab
Composite functions (shared mem and msg passing)
recv Dbsend recvx send sendx sendm sendxm
acgrl acgwl rlsrl rlisw w 2rl
lrecv 1 bsend irecvx i1acqgrl iacgw
Process and thread control
enlist init nyinfo hdlr prior

Solutions. Architectural Layers

‘ User’s Application ‘
Software Cabling (SC):
|'Trad|t|onal L anguages, “ﬁsual OO component coordination

Tools, Compilers methodology for building & analyzing

SE, fault tol., component dataﬂovv_/“ Indep threaql” apps from
»assembly, load balancings modules implemented in trad’| langs

Portable & Secure A+ Cooperative Data Sharing (CDS):

Comm. & Threads Efficient runtime support for portable

oo threads and communication between
- them, on variety of architectures

Parallgl Management em, on variety Itectu

or Uni- People, Instruments, Computers, and

processor platform/OS | Archives (PICA): Ryjjes and proto-

cols for finding, bargaining for, and
Grid/P2P/Internet scheduling distributed, independently-
controlled resources of all kinds

SE/LB/FT Layer: Software Cabling (SC)

Softwar e Engineering goals:
 Manage (i.e. determine/dictate scope of) data, events, side-effects
* Provide straightforward semantics (declarative or functional)
that can be used to reason abstractly in dynamic, hetero env.
o Components, templates, & OO: To manage complexity and ease
construction, from simple tasksto multi-disciplinary systems

Execution-based goals:
» Fault tolerance, through atomic transactions
« Efficient resource use by commoditizing usage—i.e. load
balancing generic transactions
e Latency hiding & bandwidth preservation via split transactions,
understanding potential producers & consumers of information

SC: “CompuPackets’ (Dataflow)

Traditional Packet SNitchingi “ Compu-Packet Switching”

OOE @ mm=

Program is“indep” threads, init data

Resource cloud
(BW+cycles
+...)

[T 2 3 7]
M essage isindep packets

‘Compupacket”
= thread+its dater

Compupacketsindependently use

cyclesto run, create new data
(e.g. for new c’' packets).

Packets independently use

BW to get to destination (‘1\7’('2\‘
I I - e | ~=f e Il

SC: TheThree Layers Revisited

Diskless Server Compute Server Data Server
-0 =0 |- 0 ~-0=0=0-~ | '-‘
0=0=-9=0r0~-0=0=0=-0 .= = = =
- Q="0 -0 ="0=-0="0 - "=
0="0 = 0=-"0=-0=0=0 "

S0P - E— - Ar chi ve
oo xe) - "=
Pr ogram /O

Tool Notation Role

PICA Raw resour ces (M achines, disks, networks, etc.)

CDS — Common execution/communication/security env.

Software | © Stateless (non-executing) program fragment

Cabling State (i.e. data item or region)

Executing (or execute-ready) “ compupacket”
(Program + Data = atomic transaction)

SC:. Advantages/Challenges of Dataflow

Advantages:
o Compacketsindep, either run or don’t: No waiting for each other
o Compupacketsfill up processorslike pebblesinto bucket,
efficiently using whatever cyclesare available
« Compupackets, as atomic transactions, facilitate fault tolerance
o Each compupacket isfunctional, easy to specify & reason about

Challenges:
ready compupackets should be large (> # available processor s)
* Need methodsto build programsin thisform (w/existing langs)
« Binding data to compupacket and initiating it must below ov’'h’d
e Link latency must be hidden or avoided when possible
* Need strategiesfor compupacket binding, processor assignment

SC: From Program to (Portable) Threads

program in rograminn rogl.expliditl
trad’l lang ppar%llel lang MOi-threaded

(LessMAGIC @IAGIC Done

Making multi-threaded appsor parallelizing compilersistough, BUT
o virtually all programs are built from smaller components (i.e.
functions, subroutines, methods, etc.)
o if sde-effect free, they already act like compupackets—i.e. they
begin with ther input data, run to completion creating results
» 50, facilitate concurrent composition, manage scope of side-effects

SC: Concurrent Composition, Scoping

Softwar e Cabling uses CDS-style comm to compose moduleswritten
In one or moretraditional languages (e.g. C, C++, Fortran, Java).
* Programmer explicitly manages of scope of side-effects (e.g. data
access/flow) between modules using the concept of “ cabling”
« Execution order ispurely event driven, facilitating concurrency
* To captureall potential module interactions, a schematic-like
visual syntax (and accompanying CASE tools) supported
o Constructsfacilitate hierarchical composition, templates, OO,
data parallelism, distributed mem alloc, distributable arrays

So, SC good for single app, multi-disciplinary, & mission-critical SE:
« Formal, functional specifications provide leverage for program
spec, verification, and power ful debugging techiques & replay

 Fault tolerance (because compupackets are atomic transactions!)

SC: 20,000ft View

Two kinds of modules:
Both consist of a body, which tells \
what to do, and an interface,
which allows it to interact with
its environment Ig
\
Board body is graphical (think schematic) (d
y
Chip body iswritten in DO = 1,10
your favoritelanguage P=...
(C++, Java...Fortran?) |
. f
| nter face consists of [TT111]
pinswhich carry data/'I T >2
and signals. (Correspond Chip Board e

closely to CDSregions, cells.)

SC: Chip Body
A chip’sbody isasubprogram or function, and the pinsin thechip’s
Interface areitsarguments. Theonly syntax extensions are:
1. An interface definition language (IDL) to define interface

2. A “signal” statement, effectively a“return” that allows one
argument at atimeto bereturned—roughly of the form:

post signame to pinname

Unlike locking primitives or message receipts, it does not changethe
local behavior of the code*. So, the programmer usesa purely
sequential, traditional mindset when implementing components.

*except f or optionally making the pin ar gument inaccessible

Summary

Elepar breaksthe problemsof distributed resour ce collectives (e.g.
P2P & Grids) down into:

» Distributed Resour ce Management: PICA
* Portablethreads and safe and efficient communication: CDS
o Component/O0-based SW construction and fault tolerance: SC

Each isbased on a sound technical approach. Each ismadeto work
with theothers, but can bemodularly replaced. CDSisavailable now
In demo form (on Elepar website), info on other tech also there.

Elepar ishappy to discuss consulting, collaboration, and investment
arrangementsto help othersleverage thistechnology.

Slopar

