
Distributed Resource Collectives:
P2P and Computational Grids

David DiNucci, PhD
dave@elepar.com www.elepar.com

Overview

Big Picture
• Acknowledging Connectivity/Metacomputing
• Historically Formative Technologies
• Distinguishing features (P2P & Grid & Hybrid)

Tech issues

Focus on Distributed Computing
• Existing approaches
• Elepar’s approach (“compupackets”, CDS, SC, PICA)

The Players
• Users/Groups
• Companies/Projects

Acknowledging Realities of Connectivity

Topology: Users highly-connected, no longer star topology of
centralized mainframe or server accessed with dumb
terminals or clients

Power: “Clients” are often nearly as powerful as the “servers” (more
powerful in aggregate)—or as simple as cell phones

Link directionality: Bidirectional, not restricted to just “push” (like
email) or just “pull” (like web)

Storage locality: Memories and disks of network nodes effectively
form distributed storage hierarchy

Metcalfe’s law: Value of network ~ (# users)2

A Grand Vision: “Metacomputing”

People

Archived
Data/Info

Compute
Power

Instruments/
Peripherals

Distributed
Heterogeneous

Collective

Connections: Some History

82 85 88 89 90 91 92 93 94 95 96 97 98 99 00 01
cosmic
cube

iPSC1
nCUBE

condor

pvm1 pvm2
pvm3

mpi-1 mpi-2

beowulf

ipg@NASA
paci@NSF dtf

napster

GRID book
gf1/2/3/4/5 ggf1/2

(2.8B)

* * *

seti@home

Dist. Computing APIs

Grid

WWW/Peer-to-Peer

Dist. Computing Arch.

Cycle Stealing/“P2P computing”

distributed.net

mosaic
netscape

avika

i-way

primenet...entropia

p2pwgsoapxmlwiki * *

cancer@intel

gnutella

elepar

ipbackbone
wais, archie

(cds)

icq
jxta

legion

<-usenet

(sc)

java
jini

ibm

IBM Grid Announcement: Aug 2, 2001

NSF TeraGrid Announcement: Aug 9

Peer-to-Peer vs. Grids: Different Sociology

Peer-to-Peer Grid
People Sales, marketing,

analysts, hobbyists
Researchers, scientists,
engineers, designers

Archives Documents, sales,
music, game state

Scientific, design,
historical databases

Compute PCs, PDAs Parallel servers, supers
Peripherals GUIs, personal

devices, printers
CAD, immersive VR,
sensory, robotic devices

Economy Cheaper (conserve
in existing practice)

Bigger (enable new
capability/approach)

Motivators Data access, privacy,
autonomy, indep.

Capacity availability,
scalability, efficiency

Dynamics Assemble, disband Utility, grow & shrink

Hybrids: “Peer-to-Grid”

Tie together the servers and workstations scattered around their
enterprise into a collective compute, collaboration, & storage facility

Advantages:
• Relatively cheap: More effective exploitation of existing resources
• Continuous upgrade

Challenges:
• Currently very difficult for most applications to utilize this

distributed, heterogeneous, dynamic environment effectively
• Even behind firewall, need to deal with “it’s my machine”

Aerospace and biotech companies are using this mode on some easily-
distributable problems

Technical Challenges

• Dynamic topology -> Resource discovery/reservation/scheduling
• Heterogeneous speed/archit. -> Portability/Variable granularity
• Local or distributed comm -> Latency tolerance/Low ovhd/QoS
• Many decentralized components -> Fault tolerance
• Complex & concurrent -> Formal analysis, debugging rules
• App still #1 -> Leveraging existing tools, languages, techniques
• Utilizing untrusted resources -> Privacy/Security/Anonymity
• ROI -> Revenue models, pricing, bidding, accounting
• Connectivity -> Firewalls, NATs, dropped lines
• Intellectual property -> DRM, digital watermarking, capabilities
• Multiple administrative domains -> flexible policies

And when tech solutions are found, then comes standardization.

P2P Connectivity Challenges/Approaches

• Network Address Translators (NATs, IP masq) & Firewalls

• Brokers
• Port 80, Universal Plug-n-Play (UPnP): www.upnp.org
• Dialup oversubscribing
• Centralized vs. distributed directories, cacheing policies
• Collaboration modes (sync, async)
• Content delivery networks (CDN), digital rights management

ip#

ip#

pub

pub

private ip#sprivate ip#s

Distributed Computing Challenges: 4 Ps

Performance: Wouldn’t be using this approach in first place if speed
unimportant...so Java sometimes ruled out

Portability: Programs must be portable not just among different
node architectures, but while concurrently using varying
numbers of potentially-faulty heterogeneous nodes running at
different speeds with differing topology and connectivity

Programmability: Need methodologies for developing and verifying
programs to manage complexity inherent in these concurrent
distributed heterogeneous programs

Profitability: A revenue model that works for app developers,
compute providers, and users

Distributed Computing: Current Approaches

Grids (e.g. Legion, Globus): Explicit decomposition and embedding
a la high-perf parallel. Relatively high perf, low prog, low port.

P2P (e.g. Entropia, U.Dev): Client server, SPMD, divide & conquer
search (parameter or huge domain) a la SETI@Home.

Server

Elepar Approach: CompuPackets (Dataflow)

1

2

3 4

4

3

1

2

Message is indep packets

Packets independently use
BW to get to destination

1 3 42

Re-interpret packets as msg

Traditional Packet Switching “Compu-Packet Switching”

Program is “indep” threads, init data

“Compupacket” = thread+its data.
Compupackets independently use
cycles to run, create new data

(e.g. for new c’packets).

Interpret as computation DAG+results

1 2 3 4

1 3

2

1
3

2

cycle+BW
BW cloud cloud (for

compute+
create)

Advantages/Challenges of this Approach

Advantages:
• Compackets indep, either run or don’t: Nowaiting for each other
• Compupackets fill up processors like pebbles into bucket,

efficiently using whatever cycles are available
• Compupackets are atomic transactions, aiding fault tolerance
• Each compupacket is functional, easy to specify & reason about

Challenges:
ready compupackets should be large (> # available processors)

• Need methods to build programs in this form (w/existing langs)
• Binding data to compupacket and initiating it must be low ov’h’d
• Link latency must be hidden or avoided when possible
• Need strategies for compupacket binding, processor assignment

Elepar’s Three Layers

User’s Application

Traditional Languages,
Tools, Compilers

Visual Component
Construction Language

Portable Communication
Library

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
“independent thread” apps from

modules implemented in trad’l langs

Efficient runtime support for portable
threads and communication between
them, on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

From Program to Threads

Writing multi-threaded apps or parallelizing compilers tough, BUT
• virtually all programs are built from smaller components (i.e.

functions, subroutines, methods, etc.)
• those components already act like compupackets—i.e. they begin

with their input data, run to completion creating results
• so, just need to augment component composition, initiation rules

program in
trad’l lang

MAGIC!

t1 t4t3t2

program in new
parallel lang

Less MAGIC

t1 t4t3t2

MAGIC Done

t1 t4t3t2

prog explicitly
multi-threaded

Software Cabling (SC): Modules

DO I = 1,10
P = ...

Two kinds of modules:

Both consist of a body, which tells
what to do, and an interface,
which allows it to interact with
its environment B

o
d
y

I
f
a
c
eChip Board

Board body is graphical (think schematic)

Chip body is written in
your favorite language
(C++, Java...Fortran?)

Interface consists of
pins which carry data
and signals.

SC: Chip Body

A chip’s body is a subprogram or function, and the pins in the chip’s
interface are its arguments.

To change the color of a memory, the chip posts a signal to the pin,
using a special statement of roughly the form:

post signame to pinname

This is the only special statement in your code, and it does not block
or otherwise change the local behavior of the code*

*except f or optionally making the pin ar gument inaccessible

SC As High-Level Design/Spec Language

SC is a very-high-level graphical component composition language
which contains the constructs required to manage the complexity and
make real-world programming possible: e.g.

• Modular (OO), template-based program construction
• Adapts to most any source language (e.g. Java, Fortran, C, C++)
• Formal, functional specifications provide leverage for program

verification and powerful debugging techiques & replay
• Fault tolerance (because compupackets are atomic transactions!)
• Supports distributable arrays, mem allocation, data parallelism

...making SC an excellent alternative design & specification language
for all large-scale mission-critical software development.

Elepar’s Three Layers

User’s Application

Traditional Languages,
Tools, Compilers

Visual Component
Construction Language

Portable Communication
Library

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
“independent thread” apps from

modules implemented in trad’l langs

Efficient runtime support for portable
threads and communication between
them, on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

CDS: Efficient Data/Thread Binding

CDS (Cooperative Data Sharing) blends the semantics & advantages
of message passing and distributed shared memory, includes support
for process control, active messages, conversion/marshalling.

Trad’l threads Msg passing DSM CDS

push pull

t1 t2 t1 t2 t1 t2 t1 t2

data
da ta da ta

da tapush
pull

Low overhead

All data must be
held in common
or shared memory

Latency hiding
Queuing
Data translation

Copy overhead
always suffered

No extra copy
Latency hiding
Queuing
Data translation
No extra copy

Pros:Pros:

Cons:

Cons:
Cons:

Pros:Pros:

No latency hdg
No queuing
No data trans
Mem mgmt No mem mgmt

Comparing CDS Featureset

Features
C
D
S

D
S
M

M
P
I

S
O
C
K

L
I
N
D
A

Some data can be traded/shared in place (true 0 copy!) x x

Consumer can pull (get) data from passive producer x x 2 x

Consumer can prefetch/prepull data to hide latency x ? 2

Producer can push (send) data to passive consumer x x x ?

Data can be queued at producer waiting for pull x x x ?

Pushed data can be made to overwrite previous value x x x

Producer can retain access rights to comm’d data x 2 x

Producer can relinq access rights to comm’d data x x x x

Dynamic memory allocation for shared memory x ?

Consumer can specify timeout for waiting x ?

Supports heterogeneous platforms x x

Simplicity (~number of function + macro interfaces) 51 20 !!! 13 5

The CDS Interface

Managing comm heap and contexts/cells
rgalloc rgmod rgfree rgsize rgrealloc

addcntxt delcntxt grwcntxt

Communication Primitives
read deq benq enq write zap enqm writem

iread ideq ibenq wait waitm ienqm benqm

Copying and Translation
copyto copyfm copytofm transtab

Composite functions (shared mem and msg passing)
recv bsend recvx send sendx sendm sendxm

acqrl acqwl rlsrl rlswl wl2rl

irecv ibsend irecvx iacqrl iacqwl

Process and thread control
enlist init myinfo hdlr prior

CDS As General-Purpose API

CDS offers very general concurrent programming support,
addressing many current challenges in parallel and distributed
computing—e.g.

• Programming heterogeneous architectures (e.g. clusters of SMPs)
• Making applications more portable between distributed and/or

shared memory and/or uniprocessor architectures
• Providing a much simpler programming interface than MPI-2

while offering similar (or greater, in some cases) functionality
• Providing a common API capable of leveraging the power of

newer transport protocols like VIA and InfiniBand

CDS is currently at prototype stage within Elepar, built upon SysV
shared memory segments, UDP/IP, and custom locking protocols

Elepar’s Three Layers

User’s Application

Traditional Languages,
Tools, Compilers

Visual Component
Construction Language

Portable Communication
Library

Dist. Resource
ManagementParallel

or Uni-
processor platform/OS

Grid/P2P/Internet

Software Cabling (SC):

Cooperative Data Sharing (CDS):

People, Instruments, Computers, and
Archives (PICA):

Visual OO component coordination
methodology for building & analyzing
“independent thread” apps from

modules implemented in trad’l langs

Efficient runtime support for portable
threads and communication between
them, on variety of architectures

cols for finding, bargaining for, and
scheduling distributed, independently-

Rules and proto-

controlled resources of all kinds

People, Instruments, Computers, Archives

“PICA”: Protocols and guidelines for distributed resource discovery,
bidding, (co)scheduling and reservation, and usage/relinquishment

Four principle components:

• Resources: Standard way to specify complex resources
• Resource Companies: Standard way to request, bid for, and/or provide

resources
• Resource Keys (i.e. capabilities): How resources are passed from place

to place
• Resource Supply Chains: Fan-in/Fan-out of complex resources and

payments between suppliers and customers

PICA: Resources

PICA: Resource Companies

PICA: Supply Chain

Companies (Profit & Non-)

File Sharing: Freenet, Napster , Gnutella, Publius, Mojo
Nation, Buylink, Free Haven, Y aga, Enfi sh,
TRUEDISK, CENTERSPAN Scour

Streaming, W ebcast: OpenCola Swarmcast, Allcast,
CENTERSPAN c-star , Chaincast

Distributed Computing: Data Synapse, Entropia,
SETI@Home, Computepower (Raj), Parabon,
Popular Computing, United Devices

IM: AIMster , Jabber
Collaboration: Groove, Endeavor/Magi, Engenia,

WorldStreet, Consilient
Distributed Search: Jibe, NextPage, OpenCola Folders

Infrastructure: Elepar , (Sun) JXT A, Avika, Gridworks

Local Involvement

Intel (P2PWG, TeraGrid)

IBM (TeraGrid, petaflops, Linux scalability)

TrueDisk (Data sharing/accessibility)

Centerspan (Content delivery, streaming)

Elepar (Portable parallel/distributed computing tools)

Open Source Development Lab (Linux scalability)

OGI (Multi-modal communication, distributed & heterogeneous
database & digital library, InfoPipes QoS)

Driving Users/Groups

Global Grid Forum (www.gridforum.org)
• NASA Information Power Grid
• NSF PACI (NCSA@UIUC + NPACI@UCSD)
• Distributed Tera Grid Facility (above+)
• GriPhyN, Particle Physics Data Grid (PPDG)
• DOE Science Grid & DisCom2 (Distance and Distributed

Computing and Communication)
• EuroGrid
• German Federal Ministry E&R (BMBF) Uniform Access to

Computing Resources (UNICORE)

New Productivity Initiative (www.newproductivity.org)
• HP+Compaq, Platform Computing, Cadence, SGI, Blackstone

Tech Grp, CLRC, Neolinear, Aurema, Teraport

Driving Users/Groups (cont’d)

Peer-to-Peer Working Group (www.p2pwg.org)

• Members include: Avaki, CenterSpan, Consilient, Data Synapse,
Endeavors, Engenia, Entropia, Fujitsu PC, Groove, HP, Hitachi,
Intel, NTT, OpenCola, O’Reilly, Proksim, Static, United Devices..

Other information sources:
• groups.yahoo.com/group/decentralization/
• www.openp2p.com (aka www.oreillynet.com/p2p/)
• www.peerintelligence.com
• www.peertal.com
• www.nsf.gov/od/lpa/news/press/01/pr0167.htm
• www.nytimes.com/2001/08/02/technology/02BLUE.html

Summary

• Tech building for decades, exploding worldwide in last few years
• Peer-to-peer & Grids will converge, and challenges are similar,

but different focii for now
• Elepar is taking a “compupacket” approach to computing
• Many organizations like Peer-to-peer WG, Global Grid Forum,

companies, working on the multitude of challenges
• One of those problems: When is decentralization superior?
• Another: What kind of economy can fuel this work?
• Cooperative Data Sharing (CDS) powerful enough to use in place

of MPI, DSM
• Software Cabling (SC) is high-level module construction

language a la UML

