
CDS1 Conclusion

Other functionality:

• Data translation, for heterogeneous processing
• Dynamic process creation
• Message Handlers with some simple thread mgmt

Current Status:

• Prototype implemented on Davinci cluster, better
performance than optimized MPI on shared-bus in
some cases (due to lack of copy).

• Currently unfunded. If not re-funded, looking for a
private company or standards committee to adopt.



M L R (D) C
P i K S D
I n M S

d
a

Non-destructive write (e.g. enq) X X X X
Destructive write (i.e. overwrite) X X
Destructive read (e.g. deq) X X X X
Non-destructive read (i.e. read) X X X
Keep copy of comm’d data X X X
Don’t “““ X X X
Identify consumer X * X X
Don’t “““ X X X
Identify producer X * X
Don’t “““ X X X X X

Comparison of Semantic Options

*Linda expects consumer and/or producer to be recognized,
in some cases, by globally pre-processing source code



CDS: Cooperative Data Sharing

Objective: Provide a single, simple, and efficient interface
that allows the user to specify the semantics
required of each communication, so that it can run as
efficiently as possible on the architecture available

Approach: Provide two layers of API

• CDS1 - Kernel level. Objectives are minimality,
orthogonality, portability, efficiency, utility.

• CDS2 - User level. Objective is a “nice” user interface.



Architecture-Independent Models?

Examples: Linda, RK, Distributed Shared Memory

Each dictates pre-determined answers to one or more of these
questions:
• Does communication require that a copy be made?
• Must the “producer” know the “consumer”?
• Must the “consumer” know the “producer”?
• Does newly produced data over-write older data (or is

the data collected)?
• Does consumed data remain to be re-consumed (or is

the data destroyed when consumed)?

These should all be up to the app, not the model or language!



Parallel Architecture 102: Hybrids

Proc

Cache

Proc

Cache

Mem

Proc

Cache

Proc

Cache

Mem

Proc

Cache

Proc

Cache

Mem

Mem Mem Mem

Mem Mem MemProc

ProcProc

Proc

Proc

Proc

OR



Use of Shared-Memory Semantics

Shared-Memory semantics are usually used for Shared-bus
architectures because:
• No data movement is required, only coordination

Shared-Memory semantics are usually not used for
distributed-memory architectures because:
• Cannot move data toward next processor before it is

requested (to hide latency), even if previous process
knows where it will be needed next

• Requests are always made in small granularity, so
multiple requests must be made to move much data,
and each experiences latency of interconnect twice



Use of Message-Passing Semantics

Distributed Memory architectures are often programmed
with Message-Passing semantics because:
• Copying data to local memory decreases costly

accesses over slow interconnect
• Initiation of copy by source before destination needs

data decreases lag caused by interconnect latency

Shared-Bus architectures are often not programmed with
Message-Passing semantics because:
• Copying data serves no purpose in many cases, just

increases latency, decreases bandwidth
• Initiating copy before both sides are ready requires

buffering, which serves no purpose in many cases



Parallel Programming Semantics 101

Message-Passing (aka Distributed Copying)
• Data is copied, usually between processes.
• Each process specifies one address -- i.e. the source or

destination, usually in its address space
• Any necessary synchronization is performed

automatically, by buffering data and/or delaying copy
in either source or destination process

Shared-Memory (aka Remote Memory Access)
• Data (which may be regarded as residing outside of a

process’s address space) is accessed in situ
• Synchronization primitives help individual processes

coordinate access



Proc

Cache

Proc

Cache

Proc

Cache

Proc

Cache

Mem Mem Mem

Proc

Cache

Proc

Cache

Proc

Cache

Proc

Cache

Mem Mem MemMem

Shared-Bus (aka SMP,
or “Dance-Hall”)

Very fast bus connects all
processors to all memory,
but all processes and
memory share bandwidth,
so not very scalable

Distributed-Memory (aka MPP,
or Scalable)

Interconnect between any 2
processors relatively high
latency, perhaps low BW, but
each link is relatively or
completely independent of
others, so more scalable

Parallel Architectures 101



Cooperative Data Sharing: An
Architecture-Independent Interface for

Implementing Parallel CFD
Applications

(and other stuff)

David C. DiNucci
MRJ, Inc.

NAS, NASA Ames Research Center
Parallel Tools Team


