
Cooperative Data Sharing: An Architecture-Independent Interface for
Implementing Parallel CFD Applications

David C. DiNucci
MRJ, Inc. / NAS Systems Division

NASA Ames Research Center, M/S T27A-2
Moffett Field, CA 94035-1000

(415)604-4430
dinucci@nas.nasa.gov http://www.nas.nasa.gov/~dinucci

1.0 Introduction and Problem Description

More and more CAS applications are being converted to run on parallel architectures. For the
most part, each application-architecture pair represents a separate porting effort. In order to amor-
tize the cost of developing and porting these codes, their lifetimes must be extended by making a
single source program portable among a large class of architectures, including both shared-bus
architectures (sometimes called shared-memory architectures) and distributed-memory architec-
tures consisting of separate nodes with local memory connected with networks with much higher
latencies than memory busses (sometimes called message-passing architectures). Portable lan-
guages such as HPF can theoretically help to remedy this situation, but HPF is restricted in the
types of algorithms which it supports, and has not demonstrated sufficient performance to date.

Currently, perhaps the most popular choices are to code these applications using PVM, a mes-
sage-passing package developed to utilize heterogeneous clusters, or MPI[4], the message-pass-
ing standard still under development by an international forum. Message-passing, by definition,
requires copying data from a sending process to a receiving process, and requires the sender to
know the identity of the receiver. Message-passing is well-suited to distributed-memory architec-
tures, since the speed of an application can often be greatly improved by copying data across the
slow interconnect to bring it into the local memory of the processor which will be accessing it the
most. The latency of this transfer is best hidden by moving large chunks at one time, and having
the sender initiate the transfer towards the receiver before the receiver requires the data. Message-
passing is not well suited to shared-bus architectures, because the overhead of the copy is often
superfluous, and the constraint that the sender must know the identity of the receiver serves no
purpose.

Lately, hybrid architectures, such as the SGI cluster (“DaVinci”) and Cray J90 cluster (“Newton”)
at NAS, have become very common. These architectures consist of several nodes which commu-
nicate over relatively high-latency networks, with each node consisting of several processors
which share local memory over a shared bus. Optimal processing on these architectures requires
altering the communication methods used throughout the program, depending upon whether the
processes which communicate are on the same nodes or different nodes. In this case, simply mov-
ing a process from one processor to another can radically alter the coding of the program.

2.0 Background and Other Approaches

Over the years, several approaches have been proposed to address the problems which arise from
the differences between shared-bus and distributed-memory architectures. Three are especially
noteworthy in this context: Linda[2], Reactive Kernel(RK)[1], and Distributed Shared Mem-
ory(DSM)[3].

Linda is described as a language, but it actually consists of a few new statements imbedded in
standard C and/or Fortran:in , read , out , readp , and eval . Instead of communicating
directly between processes, these statements support I/O to an abstract ubiquitous globally shared
construct called a tuple space. One contribution of Linda is the ability for a producing process to
make data available (byout ing it to the tuple space) without knowledge of which process will
need it (i.e.read or in it) next, even on distributed-memory architectures. Some implementa-
tions of Linda also allow a process to effectively find data matching certain attributes in the tuple
space. Although Linda is billed as an architecture-independent approach, it still depends on copy-
ing the same way that message-passing does.

The Reactive Kernel (RK) contains a subroutine library which supports a method of communica-
tion which can be efficiently implemented on both shared-memory and message-passing architec-
tures. To communicate, a process allocates dynamic memory from a special communication area
(using a function similar to the standardmalloc), fills that memory with the data to be commu-
nicated, then uses RK to pass a pointer to that memory to another process, where it is queued. The
act of passing the pointer relinquishes access to (i.e. effectively frees) the memory from the origi-
nating process. When the other process obtains the pointer from its incoming queue (via RK), it
has full access to the memory until it frees it or passes the pointer to another process through RK.
If a pointer must be passed across a high-latency interconnect to reach its destination, RK trans-
fers the data along with the pointer, without user intervention. Although this communication tech-
nique avoids the extra copy required by message-passing on shared-bus architectures, it still
requires the sender to know the identity of the receiver. It also requires the process initiating the
communication to relinquish access to the communicated data as part of the communication,
unlike message-passing, and requires each reading process to have its own copy of the data,
unlike shared-memory.

Distributed Shared Memory (DSM) is a generic term describing an approach where standard
shared-memory semantics are altered or restricted slightly in order to make them more efficiently
implementable on architectures with high-latency interconnects. One such semantic restriction is
called “release consistency”[5], which requires that accesses to shared regions take place only
while the accessing process holds a lock to that region. This approach can overcome some of the
drawbacks of RK -- e.g. multiple readers are allowed in some implementations (using “read”
locks), and knowledge of the next process to access a region is not required when a lock is
released. Unfortunately, this latter attribute, together with the lack of queues in the model, remove
much of the capability for hiding latency in distributed-memory architectures, since data cannot
be forwarded to the processor where it will be needed next. Instead, data is transferred over the
interconnect only when a process attempts to acquire a lock to the data, so a process must often sit
idle while the request travels the interconnect and the data returns over the interconnect. (Linda
avoids this problem in some cases through careful compile-time analysis to determine where data

will be needed next when it is added to the tuple space.) Some forms of DSM also require some hard-
ware support, though this can often be accommodated by fairly-standard virtual memory hardware.

3.0 The CDS Approach to Communication

The Cooperative Data Sharing (CDS) library implements communication in a way that achieves
portability while retaining the advantages of the above approaches. At its core, communication in
CDS is similar to RK. A user process allocates memory from a special area (called the “comm
heap”) using a CDS routine, moves the data to be communicated to that region using a sequential
programming language (e.g. C or Fortran), then uses CDS to move the region pointer to a queue,
making it available to another process. Also, as in RK, CDS will automatically make a copy of the
data when the pointer is enqueued if the new process is across a high-latency interconnect. However,
unlike RK, a pointer can be placed into and/or removed from any queue in any process. Thus, if a
process knows the process which will use the data next, it will benefit by putting the pointer into a
queue in that process, thereby preemptively moving the data across the interconnect between the pro-
cesses (if there is one). If a process does not know the process which will need the data next, then it
can place the data into any queue (e.g. a queue in itself) where the data will wait until some process
later removes it. This latter case provides for the flexibility in Linda or DSM, when it is needed.

Unlike RK, a user process in CDS has a choice over whether to relinquish its pointer to a region
when it puts the pointer into a queue. If it does relinquish the pointer, then the semantics of the trans-
fer are similar to RK. If it does not relinquish the pointer, multiple processes (e.g. the process which
originally allocated the region and any other process which takes the pointer from a queue) can end
up accessing the region concurrently. This is beneficial if all sharing processes are reading the region,
since on shared-bus architectures, overhead can be decreased significantly over message-passing or
RK, which require a separate copy to be made for each reading process. However, in CDS, if some
processes try to modify the region while others are reading, serious harm can result. For this reason,
a user process is required to call a special CDS routine (cds1_mod) before making any modifica-
tions to a region. If no other process has a pointer to the region,cds1_mod returns immediately,
with virtually no overhead. If at least one other process does have a pointer to the region when
cds1_mod is called,cds1_mod will create a new copy of the region for the calling process. The
end result is the implementation of a “copy-on-write” policy in software, similar to that used in some
virtual memory systems.

CDS queues, called “comm cells” (or just “cells”), are more flexible than message queues in most
other systems. A process can perform five different operations to a comm cell:

deq : Acquire and remove first pointer from queue
enq : Add pointer to end of queue, and optionally relinquish (i.e. effectively free) the pointer
read : Acquire first pointer from queue, but do not remove pointer from queue
write : Remove all pointers from queue, then performenq
zap : Remove all pointers from a queue

As already described, any CDS process can perform any of these operations to any cell in any pro-
cess. The cell is specified with the combination of a process ID and an integer cell ID. In general, the
cell ID serves a very similar role to a tag in traditional message passing systems.

4.0 Heterogeneity, Copying, and Data Conversion

The routines described above work very well for those cases where all of the processes are running
on processors with similar data formats, and the data structures being communicated are naturally
created and modified in dynamic memory. For those other cases, where the data to be communicated
must begin or end up in a process’s private memory, and/or those cases where some processes use
different internal data formats, CDS providescopy routines to help in copying and/or translating
data before or after the mechanisms above have been used to communicate the bytes efficiently
between processes.

Along with the source and destination addresses, thecopy routines take a copy descriptor and a con-
version ID. The copy descriptor describes the number, type, and displacement of each field and/or
data structure to be copied. Unlike MPI type descriptors, a copy descriptor takes the form of a stan-
dard integer array, and the user constructs it without any help from CDS. The conversion ID is a sim-
ple integer code which describes how each type is supposed to be converted as it is copied. The CDS
routine transtab takes any two process IDs and provides the proper conversion ID to convert
between them.

Since it is relatively common to require acopy together with a communication, CDS provides two
routines, calledsend andrecv , which combine them. Asend is equivalent to allocating a mem-
ory region on the comm heap, callingcopy to move data into it (converting if necessary), calling
enq to add the region pointer to a queue, and thenfree ing the pointer. The overall effect is very
similar to anMPI_BSEND, and the same optimizations are possible. Therecv function is defined
similarly in terms ofdeq , copy , andfree . Because of the semantics of the component functions,
the send andrecv functions are somewhat different from their MPI counterparts in that asend
can move data to a queue in the same process, andrecv can take data from a queue in another pro-
cess.

5.0 Handlers (Active Messages)

CDS allows the user to specify a subroutine (i.e. “handler”) for each cell, along with a high- or low-
water mark. The specified subroutine will be called automatically whenever the number of pointers
in the cell falls below the low-water mark, or grows above the high-water mark. These handlers can
aid with load balancing by allowing the program to process messages whenever they happen to
arrive, or to fill up outgoing queues which are becoming too empty. A very simple priority scheme
and thread scheduler is provided to allow the user to specify which handlers should preempt others.

6.0 Dynamic Process Creation

CDS programs can dynamically grow and shrink during execution. A very simple and efficient
model of process creation is supported, where there is no connection between the new child process
and its parent until that connection is initiated by the child. This allows a parent to spawn several
children in parallel, without separately waiting for each to start, and allows each child to perform any
necessary initialization of its communication system before any other process knows that it exists.

7.0 Performance

Measurements were made on the NAS Davinci cluster, an SGI Challenge Array consisting of several
nodes connected with HiPPI, FDDI, and Ethernet networks, and each node containing between two
and eight fast SGI processors. The test program simply passes a region between two processes. One
processenqs the region into a cell in the other process, the other processdeqs it and repeats the
cycle.

The current implementation of CDS takes approximately 25µsec (best case) to pass a region between
two processes on the same node, so about 40,000 regions (i.e. pointers) per second can be passed
regardless of region size. SGI’s optimized version of MPI can send a 1-byte message in less time, but
because of the additional overhead of copying, MPI takes longer than CDS to send messages of more
than 250 bytes or so in this case.

In those cases where CDS performs copying and/or off-processor communication, the performance
of the current implementation is not exceptional. Latency is approximately 750 to 1100µsec over all
networks (Ethernet, FDDI, HiPPI). CDS achieves about 1MByte/sec over Ethernet when passing
regions of 10KBytes, 9.3MBytes/sec over FDDI when passing regions of 100KBytes, and
27.5MBytes/sec over HiPPI when passing regions of 1MBytes.

It is expected that these times and latencies can be improved with further optimization, especially by
utilizing the same HiPPI bypass technology and cache/memory management techniques used by
SGI’s version of MPI on the same hardware.

8.0 Summary and Future Plans

Altogether, there are 29 routines in the CDS library described above, called CDS1. It is inherently
more efficient than message-passing for shared-bus architectures in many cases, and is as efficient as
message-passing in other cases. CDS1 already provides much of the functionality envisioned for
MPI1’s follow-on, MPI2, even though CDS1 has fewer than one-quarter as many functions as MPI1.

From the outset, CDS1 was envisioned as the basis for other tools. One other tool scheduled to be
built atop CDS1 is CDS2, a higher-level subroutine library to provide additional MPI-like constructs
(e.g. communicators and more collective functions) to ease the porting effort for those already using
MPI. Some of this design of CDS2 has already been completed.

Further funding will foster additional important development. A more robust implementation will be
necessary. Some CFD applications (e.g. NAS parallel benchmarks) should be coded in CDS to dem-
onstrate its utility to the CFD community. Additional optimization, such as that currently present in
MPI implementations, should find its way into CDS. CDS should be targeted and optimized for more
architectures. CDS2 should be fully designed and implemented, possibly as a separate concurrent
project with CDS1. Ultimately, CDS should be demonstrated as a viable architecture-independent
interface, and it should be promoted as an open standard.

9.0 Further Information

For more information on CDS, please consult the web page at
http://www.nas.nasa.gov/NAS/Tools/Projects/CDS/

10.0 References

[1] W. C. Athas and C. Seitz, “Multicomputers: Message-Passing Concurrent Computers,” Com-
puter 21(8), pp 9-24 (August 1988)

[2] D. Gelernter, “Generative Communication in Linda”, ACM ToPLaS, 1 (1985), pp 80-112

[3] K. Li and P. Hudak, “Memory Coherence in Shared Virtual Memory Systems”, ACM Transac-
tions on Computer Systems, 7(4), pp 341-359, November 1989.

[4] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, “MPI: The Complete Reference”,
MIT Press, 1994, ISBN 0-262-57104-8

[5] P. Keleher, A. Cox, S. Dwarkadas, W. Zwaenepoel, “An Evaluation of Software-Based Release
Consistent Protocols”, to appear in Journal of Parallel and Distributed Computing.

