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Cooperative Data Sharing (CDS) is a simple
but expressive hybrid of DSM and message
passing which permits the application to dic-
tate policy, leaving the runtime to ßexibly
choose between efÞcient mechanisms.  The log-
ical semantics, potential physical implementa-
tion approches, usage hints, and a few
performance characteristics are presented.

 

Motivation and History

 

Message passing paradigms have signiÞcant advantages
when entities communicate over a high-latency channel.
The program can explicitly manage the channelÕs use,
latency can be often be hidden by moving the data
toward its next user even before it is requested there, per
datum overhead can be minimized (pipelined) by mov-
ing the data in large chunks, and tight synchronization
can be avoided by queuing unexpected data at the
receiver. In a low-latency environment, a shared mem-
ory paradigm helps preserve memory bandwidth and
reduce overhead by minizing copying.  Shared memory
also frees the program from explicitly managing data
movement, and facilitates a demand-driven style in
irregular cases, where the next entity that will need data
is not known until that entity needs the data.

The amount of latency that is tolerable for a shared
memory model is relative to many factors, and is only
worsened by the increasingly large gap between mem-
ory access frequency and latency.  To help, shared mem-
ory, and especially DSM, integrate message-like
features between computing entities and/or caches, such
as Òhome processorÓ declarations for some or all mem-
ory addresses (e.g. where they will be accessed most
often), explicit prefetch (to hide latency), and page-
based trannsfers (to pipeline the overhead).  Still, these
solutions are largely heuristic, rarely manage channel
latency as effectively as message passing, and can lead
to additional problems like false sharing. Implementing
DSM systems may impose overheads from use of mem-
ory management hardware and ÒdifÞngÓ operations.

Cooperative Data Sharing (CDS) takes a different
approach.  Instead of starting with either message pass-
ing or shared memory, its design was motivated by look-
ing at the advantages of each (like those above) in
different environments and working toward a common
interface with all of the advantages of both.  The result is

a small set of more general primitive communication
operations which can look (and perform) like message
passing, shared memory, or a hybrid. As shown in table
1, CDSÕs expressiveness serves to convey specific
knowledge from the source program to the runtime sys-
tem, where it can be combined with current hardware
configuration and status to perform the communication
most efficiently under those circumstances.

Target platforms differ not only in communication archi-
tecture, but also in the number of processors.  If soft-
ware entities running on the same processor can
exchange data with very little overhead, they can be
viewed very much like subroutines or objects in a single
entity, rather than as separate entities.  In other words, a
Òportable threadÓ approach like CDS allows the granu-
larity of the program to effectively adapt (i.e. decrease)
to the platform topology.

The ideas here originated during consideration of a run-
time system based on LGDF2 [1] at OGI c. 1989. At
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NASA Ames, they were implemented as Message Pass-
ing Kernel 1 (MPK1), a more architecture-independent
alternative to MPI-1 (then being developed) c. 1993. It
was later renamed CDS1 (for accuracy, and to avoid
confusion with other MPKs) [2], and was subsequently
proposed as a form of one-sided communication for
MPI-2.  The CDS described here is now produced by
Elepar as BCR [3], and has greater heterogeneous sup-
port, more mature implementation, and more multi-par-
adigm interfaces than its predecessors.

CDS encompasses features found in the Reactive Kernel
(RK) [7], which predated it, and most found in Tread-
marks[5], CVM [6], and CRL [4], developed contempo-
raenously..

 

The CDS Approach

 

CDS accomplishes its seemingly-conßicting goals by
providing a fairly simple set of programming semantics,
the logical model, which has an efÞcient implementa-
tion on a wide variety of target architectures, the physi-
cal model.  This is similar, in some ways, to the
approach used by high-level (compiled or interpreted)
languages, but the call-based interface used here
restricts both the expressiveness and the amount of pre-
processing available to achieve these goals.  This section
will present the abstract semantics, or the logical model,
of CDS.  Approaches to efÞcient implementation on var-
ious architectures, or the physical model, will be
described in the next section.

Each CDS computing entity is similar in some ways to a
thread, sharing information with other entities, and in
some ways similar to a process, independent enough to
run on a remote processor, so here it will just be called a

 

CCE

 

 (for ÒCDS computing entityÓ). Each CCE pos-
sesses a logically-private 

 

communication

 

 (or 

 

comm

 

)

 

heap

 

, which is just a special heap of memory that CDS
knows about (Þgure 1).  A CCE allocates a memory
region from this heap by using the 

 

rgalloc

 

 operation,
which is analogous to the standard C 

 

malloc

 

 routine
(e.g. it takes a length in bytes), but instead of returning
the regionÕs address like 

 

malloc

 

, 

 

rgalloc

 

 returns a
CDS 

 

region ID

 

, which can be thought of (by the user) as
a pointer to the regionÕs addressÑi.e. the data can be
accessed by using Ò

 

**rgid

 

Ó instead of just Ò

 

*rgptr

 

Ó
(as one might use with traditional 

 

malloc

 

).  There is
also an 

 

rgfree

 

 operation in CDS that is analogous to

 

free

 

 in standard C, that effectively declares that the
CCE will no longer access that region.  Additional oper-
ations exist to determine the length of an already-allo-
cated region (

 

rglen

 

), and to try to change a regionÕs
length without moving it (

 

rgrealloc

 

).

Along with a comm heap, each CCE can also have any
number of 

 

comm cells

 

 (usually just referred to as
ÒcellsÓ) which are visible to other CCEs. Each cell has
an integer name (unique within that CCE), so any cell
can be addressed by any CCE by naming the CCE that
holds it and the cell number within that CCE.  Each cell
can hold any number of distinct regions, in a queue-like
fashion.  There are four basic communication primitives
that operate on cells (Þgure 2):
1.

 

zap

 

, which takes a cell address (i.e. CCE name plus 
integer cell name), and deletes any regions which 
might be sitting in it.

2.

 

put

 

, which takes a region ID and a cell address, and 
produces a copy of that region at the tail of the cell, 
optionally 

 

zap

 

ping the cell Þrst, and optionally 

 

rgfree

 

ing the region after.  This is also known as 

 

write

 

 if the 

 

zap

 

 is performed, 

 

enq

 

 if not.
3.

 

putm

 

, which is the same as 

 

put

 

, but takes a list of 
cell addresses and produces a copy into each of them.

4.

 

get

 

, which takes a cell address, and produces a copy 
of the Þrst region from the cell into callerÕs comm 
heap (and optionally removes it from the cell), return-Comm Heap:  Logically private

User code & data: OS process or thread

Comm Cells:
Logically public
set of queues.
User is responsible
for creating, naming.

private heap.  Data is opti-
mized for communication.
User is responsible for
enlarging and/or shtrinking.

Figure 1.  Anatomy of a CCE
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ing a region ID to the new comm-heap region. A tim-
eout value (in microsecs) can also be providedÑor 
speciÞed as PENDING, in which case a ÒpendingÓ 
region ID will always be returned immediately, but 
must subsequently be veriÞed before use (or can-
celed) using 

 

rgwait

 

 (also with timeout).  

 

get

 

 is 
also known as 

 

deq

 

 if it is removed, 

 

read

 

 if not. 

So, CCEÕs in CDS communicate by creating regions in
their comm heaps using 

 

rgalloc

 

, shufßing those
regions between their comm heaps (via cells) using 

 

put

 

and 

 

get

 

, and eventually relinquishing them using

 

rgfree

 

. There is one more basic rule covering com-
munication: Before changing data in a region that was
obtained with a 

 

get

 

, or one which has already been

 

put

 

 somewhere since calling 

 

rgalloc

 

 (or 

 

rgmod

 

),
then  

 

rgmod

 

 must be called (with the region ID) Þrst.

 

rgmod

 

 may update the region pointer stored in the
region ID (i.e. in 

 

*rgid)

 

, so care must be taken not to
save an old value of this pointer into a temp variable
across a call to 

 

rgmod

 

.

 A CCE declares itself as a CCE (allowing it to call CDS
routines) by calling a special CDS 

 

init

 

 routine, but
this will block until or unless the CCE has been 

 

enlisted

 

.
It can be enlisted by another CCE (calling the 

 

enlist

 

routine), or by the user directly (using the 

 

enl

 

 pro-
gram).  If 

 

enlist

 

 (or 

 

enl

 

) cannot Þnd an appropriate
CCE blocked at 

 

init

 

, it may try to create one, so
enlisting a CCE will often serve both to create it, and
then to unblock the 

 

init

 

 when it is reached.  This
allows one programming approach to be used, regard-
less of whether the target platform requires all processes
to be started at once (in which case they will all block at

 

init

 

 until enlisted) or allows/requires them to be cre-
ated piecemeal.   Each CCE is identiÞed with an integer
CCE ID, which is similar to a Þle descriptor in that the
speciÞc integer used to identify a CCE may depend not
only on the CCE being identiÞed, but on the CCE hold-
ing that identiÞcation.  After a CCE has called 

 

init

 

, it
can Þnd its own ID, and the ID of the CCE which
enlisted it.  The only other way to Þnd the ID of a CCE
is to receive it through explicit communicationÑe.g.

 

enlist

 

 does 

 

not

 

 return the ID of the CCE enlisted.
The 

 

init

 

 routine itself creates a small comm heap and
one comm cell (named 0), and 

 

enlist

 

 optionally takes
a short region (as an argument) to be 

 

put

 

 into cell 0 of
the CCE being enlisted. The new CCE must explicitly
create any further cells or larger comm heap if/when
needed, by calling 

 

cagrow

 

 (vaguely like 

 

sbrk

 

).

Sometimes, the data to be moved from one place to
another will reside (or need to reside) somewhere in the
CCEÕs program memory instead of in the comm heap.  It
is usually possible to just copy the data to/from the

comm heap in traditional ways (e.g. using the pointer in
the region ID, and perhaps 

 

memcpy

 

), but CDS provides
three more ßexible routines to help;  one to copy data 

 

to

 

a region from other memory (called 

 

copyto

 

), one to
copy 

 

from

 

 a region to other memory (called 

 

copyfm),
and one to copy data between regions (called copy-
tofm).  All of these routines take a set of instructions
called a copy descriptor (or sometimes likened to a
ÒdatatypeÓ), expressed as a specially formatted integer
vector, that allows data of different types and relative
positions to be copied and packed or unpacked.  Another
routine, copytosz, can be used to Þnd out how much
space a copyto will use in the destination.  For those
somewhat-common cases when one needs to rgalloc
a region (after Þrst determining the size needed with
copytosz), copyto data to it, and then put it into a
cell, CDS offers a single composite routine called send
which does all of these.   Similarly, there is a recv rou-
tine that does the same as a get, a copyfm, and an
rgfree.  These conform roughly to send and receive in
message passing paradigms.  Both send and recv are
allowed to succeed even if there is not really sufÞcient
room for the region within the comm heap.

Use of the copy routines is mandatory when moving
CCE IDs to/from the comm heap, to translate them
between the CCE-dependent integer representation and
a CCE-independent one. The copy routines are also
extremely helpful when moving data between heteroge-
neous processors, because CDS endows each region
with an integer code (called an archtype) that tells how
that data in the region is representedÑi.e. the kinds of
processors that represent their data that way. This code
gets passed along with the region from one CCE to the
next. If the CCE is running on a processor type that
matches the archtype in a region, then that CCE can
safely access the region data directly (using the
**rgid approach). Otherwise, the data should proba-
bly only be accessed using the copy routines, which
translate appropriately based on the archtype. The
archtype for a region is set when it is rgallocÕdÑi.e.
the archtype defaults to the same as the processor creat-
ing the region, though this can be overridden by a sec-
ond argument to rgalloc. The archtype for a
particular region can be queried with the rglen rou-
tine. The archtype for the current CCE is available in a
global variable, archtype, but the archtype corre-
sponding to any CCE ID can also be determined with
the arch routine (e.g. to be supplied to rgalloc).

To make CDS more natural in shared memory situa-
tions, a set of operations (often implemented as macros)
is provided.  They are based on the principle that put-
ting a region into a cell makes it available to other
CCEs, which is just what releasing a lock does in a tra-
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ditional shared memory environment, and likewise,
getting a region from a cell provides the taker with
access to it, just as acquiring a lock does.  So, thereÕs an
Òacquire read lockÓ (acqrl) operation which is really
just another name for read, an Òacquire write lockÓ
(acqwl) operation which is really just a deq followed
by an rgmod, a Òrelease read lockÓ (rlsrl) operation
which is really just rgfree, and a Òrelease write lockÓ
(rlswl) operation which really just puts the region ID
back into a cell while rgfreeing it.  An additional
operation to convert a write lock to a read lock (wl2rl)
is the same as atomically  releasing a write lock and
acquiring a read lock, in this case accomplished by just
putting the region ID into the cell without rgfreeing
it.  Note that a write lock will block readers and writers,
but a read lock will block neither:  If a writer comes
along, it will write to a different ÒversionÓ than the read-
ers are reading.

Finally, each cell can be endowed with a handler (i.e.
user-supplied subroutine) using the handler routine,
to be requested whenever the number of regions in the
cell exceeds a speciÞed high- or low-water mark before
a get or after a put.  Even if it is requested, the han-
dler will only invoked (ÒupcalledÓ) if the currently exe-
cuting coroutine (i.e. handler or main CCE) notices and
has a lower priority than the handler.  (At this writing, it
will only notice if an operation blocks, but this is likely
to change in future versions.) The priority of a coroutine
can be set using the priority routine, and can be
temporarily adjusted down using the allow routine.

Physical Model

The previous section conveys very few of CDSÕs advan-
tages over shared memory in a low-latency environment.
In fact, from that description, CDS appears to require
even more copying (and therefore more overhead) than
message passing.  The physical model underneath is (or
at least, can be) quite different, and is described here.
This description can serve as the basis for a performance
model, but in the end, any implementation which con-
forms to the simpler logical semantics already described
would be considered valid.

Four optimizations rely on these differences between the
physical and logical models:

1.  In the logical model, each comm heap is private to its
CCE.  In the physical model, each comm heap is stored
in shared memory, where it can be accessed directly
from any CCE that the hardware allows (all such CCEs
will be called a ÒCCE groupÓ here), or from a special
daemon process that helps access that memory for
CCEÕs outside of the group.

2. The comm cells donÕt really hold regions that have
been copied from the comm heap, they hold pointers to
regions that are still sitting in the comm heap.

3. Related to 2, data is rarely copied from place to place.
Instead of copying a region to or from a cell belonging
to the same CCE group, a pointer to the region is just
moved to or from the cell. Reference counts are kept
with each region to keep track of how many such point-
ers point to it. Data is only actually copied in three
cases: when accessing a cell in a different group (so the
data needs to be moved); when modifying (i.e. calling
rgmod for) a region targeted by other pointers (as indi-
cated by the internal reference count), and when the
copy routines are called explicitly.  (The second case
here is effectively implementing Òcopy on writeÓ with-
out use of memory management hardware.)

4. The send and recv operations can be optimized.
For example, they donÕt really need to go through the
comm heap at all in some cases: The region that they
purport to use is never visible to the caller, so the data
can sometimes be moved directly between the commu-
nication channel and the CCEÕs memory addresses.

As a result of these, CDS has many similarities to shared
memory. Different processing entities communicate
through some common memory area that they can all
access, and are careful when accessing that area to
ensure that they cooperate properly, and do not interfere
with each othersÕ intentions.  The shared area is parti-
tioned into regions which are managed separatelyÑi.e.
a computing entity obtains access to an entire region at
one time, uses it as desired, and relinquishes it. Multiple
entities can read the same region at the same time.

CDS also has similarities to message passing.  A com-
puting entity (the sender) speciÞes some data to move
and the computing entity (the receiver) where it should
moved to (because it will likely be used there). The
sender and receiver use a common tag to ensure that
they are both working on the same data. The data can be
queued on the receiver until it is needed.

CDS as Target for Code Generation

The send, recv, and locking routines/macros within
CDS provide a simple and natural evolutionary path for
back-ends already utilizing these paradigms.  This sec-
tion will more fully describe a more ÒCDS-nativeÓ pro-
gramming style.

Planning a CDS program is similar to planning any
other sort of concurrent programÑi.e. Þguring which
computations can execute concurrently with which oth-
ers, and what data needs to move between those pieces.
It differs even here, though, because it is less important
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to match the number of computational piecesÑCCEsÑ
to the number of processors.  In this sense, it is more
instructive to think of CCEs as Òportable threadsÓ than
as processes like one would use in a message-passing
program: The more CCEÕs, the more ßexibility, since a
larger number of processors can be productively acco-
modated, but inter-CCE communication will be minimal
in cases when they must Òdouble upÓ on a single proces-
sor.  (Such a view will be even more valid in the future,
when CCEs may be implemented literally as OS
threads, thus minimizing scheduling overhead.)

In traditional message passing, the program is generated
using a ÒpushÓ mindset, where each data producer must
know who will consume.  In traditional shared memory,
the program follows a ÒdemandÓ mindset, and a pro-
ducer cannot provide information about the eventual
consumer even if known.  In CDS, the program provides
the information it has about the consumerÕs location
when that is known.  If the producer doesnÕt know what
will consume, the producer generally puts the data into
a local cell to minimize the likelihood that the put
operation will result in latency, even if the eventual get
from the consumer might.  If a potentially-distant con-
sumer becomes awayre of its need, it can issue a PEND-
ING get, effectively prefetching the data.  Of course,
maximum latency-hiding opportunities still result from
putting the data directly to into a cell at its eventual des-
tination, if this is known at put time.

The CDS program gets extra points for leaving data in
the comm heap (i.e. within the region), and for regions
that are only read, not written, by some CCEs (at least
for some period of time).  These will provide maximum
opportunity for communication without copying, and
for having multiple CCEs accessing the same region at
the same time.  Trade-offs are still involved.  For exam-
ple, to determine whether logically-related data should
be split into separate regions because some of it will be
modiÞed often while other rarely,one may consider
expected usage frequency and latency probabilities.

Programs that beneÞt greatly by having the data in their
private (non-comm heap) memory, perhaps in an
unpacked/scattered form, should use the send and
recv operations whenever they apply (instead of the
corresponding primitive operations) since the combined
operations provide the most opportunity for CDS to
optimize out superßuous copying. (EleparÕs current
product does not highly optimize these operations.)

This leaves the very basics of programming, and manag-
ing the resulting complexity.  For the most part, manag-
ing cell numbers is very similar to managing tags in a
message passing program.  That is, a given cell usually
accomodates a particular kind of region, though there

are cases when a single cell can be used as a collection
point for many different kinds of regions which are
identiÞed programmatically by data within each
region.  When using a shared-memory paradigm (e.g.
using the macros), each cell corresponds roughly to a
lock, but its location also represents a ÒhomeÓ for the
covered region.  This, unfortunately, has many of the
same sorts of disadvantages that home processors in
DSM systemsÑi.e. the data may end up in a different
place than you know it well be needed next.  For this
reason, if a shared region is known to go through differ-
ent phases where it will be needed in different CCEs, it
is often productive to assign it several cells (ÒlocksÓ),
each designating an upcoming phase, each within the
CCE which will be processing the data in that phase.

copyfm and copyto (or send and recv) can be
used to automatically translate data when programming
heterogeneous machines, but its overuse thwarts many
of the efÞciencies offered by CDS (e.g. copy avoidance).
On the other hand, making each individual access to
region data conditional on whether or not conversion is
required can be very complex and error-prone.  To
achieve a middle ground, the program can check the
archtype for each region once, shortly after getting it,
and then either (a) copyfm the data to a buffer in user
space and create a pointer to it, if conversion is required,
or (b) set the same pointer to point to the region itself
(i.e. to *rgid), if not.  The pointer can thereafter be
used to access correctly represented data, regardless of
circumstance.  This protocol can be further formalized
using macros/routines.  It becomes somewhat less effec-
tive when the region in question  contains some CCE
IDs, unless all of them are at the end of the region and
the caller doesnÕt need to access them, since CCE IDs
must be converted through the copy routines to be use-
ful, and the room taken by a native CCE ID in the region
will be very different than the size of an integer (i.e. the
converted CCE ID in user space).

The CDS enlist and init operations, which are
used to start the CCEs of a program, are designed to be
independent of speciÞc details of how processors are
allocated or how processes are initiated.  Because of the
resulting ßexibility, most user programs will not use
them directly, but will instead call library functions cus-
tomized to interface with speciÞc processor allocation
systems (if any), and to create CCEs in a certain topol-
ogy, or with certain startup conditions.

An existing CCE cannot address the cells in a new CCE
unless it knows the new ID, and it canÕt know this until
the new CCE (or a CCE it has already told) reveals it.
Likewise, the new CCE cannot inform any other CCE of
its ID unless it knows their ID.  This can be used to
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implement information hiding, but must also be consid-
ered during program initiation. Since a new CCE always
knows its enlistorÕs ID, one common user-enforced pro-
tocol is for the enlistor to get a region (the so-called
ÒbirthcryÓ) from the new CCE (in one of the enlistorÕs
cells) containing the new ID. This get should have a
timeout value speciÞed to account for the case where the
new CCE never succeeds in producing the birthcry. (If
the enlistor can do productive work between the
enlist and the get, it may be able to completely hide
CCE creation overhead.) Alternate startup protocols are
possible by having the enlistor provide one or more
other CCE IDs within the enlistment region (i.e. placed
into cell 0 of the enlisted CCE).  In any case, the new
CCE is anonymous between the time that it calls init
and the time that it puts its ID into another CCEÕs cell,
so the intervening interval is precisely when it should
call cagrow to create its comm area (i.e. comm heap
and comm cells):  Waiting until after it performs the
put runs the risk of other CCEs attempting to access
the cells before they exist.  Note that the comm heap can
become fragmented over time, so to ensure that sufÞ-
cient space will be available for any particular region, it
may be necessary to create it signiÞcantly larger than the
total regions that may actually be stored at any one time.

Handlers can cause action to occur when a particular
cell gets too empty or too full, or can even facilitate a
purely demand-driven programming methodology,
where the main program effectively stops and all subse-
quent activity occurs within handlers.  One of the most
interesting operations is to install a handler with a low-
water mark of 0, meaning that the handler will be
requested only if a get is performed on the empty cell.
The handler can therefore put a region into the cell to
satisfy the get which caused it to be requested.

Performance

Although CDSÕs performance advantages come prima-
rily from copy avoidance when CCEs share memory, it
also enjoys advantages over message passing systems
(e.g. PVM, MPI) for other reasons.  Housekeeping mes-
sages, used in MPI to ensure a ready buffer on the
receiver, are rarely needed in CDS because the user is
responsible for always ensuring sufÞcient comm heap.
Also, while PVM and MPI require that all transfered
data be processed through a ÒtypeÓ, CDS allows access
to the raw payload, and makes translation (i.e. copyfm
and copyto) optional.  As a result, CDS can deliver
more of the raw fabric bandwidth to the application.

EleparÕs current CDS implementation (called BCR) uses
standard SysV shared memory segments, UDP/IP com-
munication, and custom low-level locking.  It does not

implement lock-free queues at this time. We have run
some simple benchmarks on a small heterogenous clus-
ter. The ÒringÓ benchmark passes regions of varying
sizes around CCEs using simple enq & deq, and we
ran it on a 2-processor Pentium III 850MHz running
Linux and a Mac Powerbook 266MHz G3 running
LinuxPPC communicating over 10baseT ethernet.
Each pass (put+get) took 2.8 msecs with 2 CCEs running
on the PC (independent of region length), or 5.6 msecs
with 3 CCEs.  Across the ethernet,  bandwidths of
58.6KB/s, 293KB/s, 957KB/s, and 1.05MB/s were
observed for region sizes of 10, 100, 1000, and 10000
bytes, respectivelyÑnearly native hardware capacity
even at relatively small region sizes. 

Future Plans and Conclusions

Elepar considers this an early version for CDS, hence
calling it ÒBefore CDS RedesignÓ (BCR).  Further fea-
tures under consideration include cell contexts, more
forms of non-blocking recv and blocking send, and
potentially collective operations.  Standards are feasible.

CDS provides an expressive and ßexible subroutine-
based interface, together with simple semantics and
comprehensible performance model, to serve as a target
for scalable languages, and to provide a runtime with the
information it needs to make wise dynamic performance
decisions based on information extracted from the
source program and physical conditions.

References 
[1] D. DiNucci, R. Babb II, ÒDesign and Implementa-
tion of Parallel Programs with LGDF2Ó, Digest of
papers from Compcon Ô89, IEEE, pp. 102-107.
[2] D. DiNucci, ÒA Simple and EfÞcient Process and
Communication Abstraction for Network Operating
SystemsÓ, Proceedings of CANPC Ô89, LNCS volume
1199, Springer-Verlag, pp.31-45, D. Panda and C.
Stunkel, Eds., Feb 1997.
[3] D. DiNucci, ÒBCR Principles and User Guide v1.1Ó,
Elepar, Jan 2002. 
[4] K. Johnson, M. F. Kaashoek, D. Wallach. ÒCRL:
High-Performance All-Software Distributed Shared
MemoryÓ, Proceedings 15th Symposium on Operating
System Principles, Dec 1995.
[5] P. Keleher, S. Dwarkadas, A. Cox, W. Zwaenepoel,
ÒTreadmarks: Distributed Shared Memory on Standard
Workstations and Operating SystemsÓ, Proceedings
1994 Winter Usenix Conference, pp. 115-131, Jan 1994.
[6] P. Keleher, ÒCVM: The Coherent Virtual MachineÓ,
University of Maryland, November 1996.
[7] J. Seizovic, ÒThe Reactive KernelÓ, Masters Thesis,
CSTR tr-88-10, Caltech, October 1988.


