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Important License Terms:  Warning, Agreement, and Disclaimer

 

This software and documentation is currently an experimental product, without any guarantee, 
warrantee, or source code, and license to use it is provided to you in accordance with the follow-
ing terms, and with the expectation that signiÞcant bugs may still exist.  Even if such bugs do not 
exist, the user should not infer or assume that it is well-suited to any particular purpose: Determi-
nation of such is entirely the userÕs responsibility.  Users should consider themselves early adopt-
ers, and as such expect greater risks than someone using or testing a mature product.  For 
example, this software runs its own background processes (ÒdaemonsÓ) which open their own 
sockets (ports), initiate processes on remote machines, and use low-level UDP/IP communication 
which may not interact appropriately, or share resources fairly, with other software using the same 
networks (e.g. based on TCP/IP).  Programs will often intentionally execute tight loops while 
waiting for events, thus potentially consuming signiÞcant CPU time while not performing useful 
work, and programs may not correctly terminate in some cases, thereby potentially consuming 
resources even when the user does not intend it to do so.  At the very least, then, this software 
should probably be used only on known-insecure systems or Òbehind the ÞrewallÓ, and on com-
puters and networks where risks from unforeseen circumstances (potentially including failure 
and/or corruption) are considered acceptable.  While the creators have made reasonable attempts 
to minimize certain modes of failure, there is no guarantee that they have been successful, or that 
those particular modes are applicable to you.  Your use of this software implies agreement to this 
license, your understanding and acceptance of these risks, and your agreement that Elepar will not 
be held liable for any loss or damages resulting from its use.

Your use of this software also implies that you will not attempt to determine internal operation of 
the compiled or executable code, through reverse engineering, disassembly, or other means, or to 
share that information with others if it is so determined, or to work around or otherwise thwart any 
protections or restrictions built into the software, e.g. those intended to keep the user from per-
forming certain operations before he/she agrees to and/or purchases additional licenses.
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Introduction

 

Cooperative Data Sharing (CDS) is an approach to programming computers, and most speciÞ-
cally collections (or teams) of computers.  That is, it allows one program to be broken into pieces 
and spread among many different computers, and for those pieces to then communicate with one 
another to perform a task.  There are other approaches to this, which go by names like Òmessage 
passingÓ and Òshared memoryÓ, but each of these approaches is optimized for speciÞc kinds of 
computer architectures, networks, and sometimes applications. As a result, programmers using 
those approaches must often decide, even while designing a program, whether that program will 
execute on a single processor, a cluster of PCs, a high-performance parallel machine, a Òcomputa-
tional gridÓ, a geographically distributed Òpeer-to-peerÓ network, or some other platform.  If the 
program moves to some other place using a different platform, or if the program doesnÕt move but 
the platform for which it was programed is phased out, a great deal of effort may be lost.

CDS is a more portable approach, created after carefully studying the advantages and disadvan-
tages of these other approaches in varying situations.  Although CDS plays the same sort of role as 
those other approaches, it in some sense transcends them and encompasses them.  One way of 
considering CDS is as a single way of programming that can automatically switch between shared 
memory and message passing, depending on what is best at the timeÑi.e. based both on what the 
communicating entities need to do to the data and on how those entities are related on the hard-
ware (e.g. on the same processor, on different processors that share memory, or on processors that 
must communicate over high- or low-latency networks).  When you program in CDS, your pro-
gram can look like message passing or like shared memory or both, but optimal ßexibility and 
efÞciency can often be obtained by making each part of your program use the style that works best 

 

for that part

 

.  This leads to a CDS-unique style which will be further described on these pages.

The speciÞc programming interface described here is called BCR, which is a CDS approach, but 
is slightly simpliÞed from the full CDS programming interface (at 

 

www.elepar.com/CDS/

 

).   
Although not equal, BCS is 

 

very

 

 similar to an earlier version of CDS, called CDS1 (which was 
implemented at NASA Ames Research Center by the founder of Elepar), so ÒBefore CDS Rede-
signÓ (BCR) is a Þtting name.  (Each letter in BCR also happens to be alphabetically just before 
the corresponding letter in CDS.)  Because of BCRÕs similarity to true CDS, it serves as a good 
way to learn and experience CDS, and unless clearly stated otherwise, any general comments here 
that refer to CDS will also apply to BCR.
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Background:  Shared Memory and Message Passing

 

Terms like Òshared memoryÓ and Òmessage passingÓ will be used liberally throughout this docu-
ment.  So that all readers can start from the same point, here is a brief description of these terms, 
which can safely be skipped by those already familiar  with them.

Message passing is used to communicate between independent processing entities (ÒprocessesÓ) 
which are assumed to share access to some sort of bidirectional communication channel (e.g. net-
work, or in some instances, memory) between them.  To move data over the channel, one entity 
(the ÒsenderÓ) states the desire to push a certain amount of data, currently residing in one or more 
particular memory areas, to a particular other entity, while that other entity (the ÒreceiverÓ) states 
the desire to take what comes in over the channel and store it in one or more particular memory 
areas.  The data moving across the channel is called a message.  If the sender initiates the push but 
the receiver is not waiting for the message, the message is usually queued (or ÒbufferedÓ) auto-
matically and silently on the processor of the receiving entity until it is needed, but this will 
depend on the particulars of the message passing system being used,  and sometimes on the par-
ticular options speciÞed by the sender and/or receiver.  If the receiver states its intent before the 
sender does, the receiver often just waits (or ÒblocksÓ), but this can also differ depending on the 
situation.  To help ensure that the senders and receivers donÕt get mixed up and start crossing mes-
sages with other entities (e.g. on the same processors), it is common for each message to carry an 
additional name (or ÒtagÓ and ÒcontextÓ) which both the sender and receiver specify, and which 
must match for the transfer to occur.

Shared memory is used to communicate between processing entities that can access common 
dataÑi.e. where the data stored in some or all of their address space is shared.  (These entities 
may still be referred to as ÒprocessesÓ, but are often called ÒthreadsÓ, especially if they share all of 
their address space.)  This approach is often restricted to hardware that has a very efÞcient (low-
latency) connection between processing entities.  Communication occurs whenever one process-
ing entity modiÞes some of this shared memory, and one or more other entities read (access) it.  In 
addition to actually writing and reading, the communicating entities must cooperate on when each 
is reading and/or writing, and to which area of memory.  (Consider two people communicating in 
a shared room:  Having both speak simultanously, and then listen simultaneously, doesnÕt work, 
they must agree on who is speaking when.)  To accomplish this, the entities usually divide the 
memory up into regions, and associate each region with another (very small) region called a 

 

lock

 

.  
The entities agree not to access the larger region unless they Þrst acquire the lock, which means 
waiting until it set to some predetermined ÒunlockedÓ value, and then changing its value to 
ÒlockedÓ. Special locks are sometimes employed that allow multiple entities to read the memory 
at the same time, but if there are any readers or writers, stops any subsequent writers from acquir-
ing the lock. (Newer hardware may also support Òwait-free lockingÓ in some cases, e.g. by not 
locking memory, but just sensing whether it was accessed by another entity when you didnÕt want 
it to be.  This document will not refer to that approach, as its applicability is limited.)
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Motivation Behind CDS

 

Message passing has signiÞcant advantages when the communicating entities are separated by a 
high-latency channel (i.e. it takes relatively long to move data between them), because
¥ the programmer can explicitly dictate when data should move across that channel
¥ the latency can be ÒhiddenÓ, in many cases, by moving the data to its destination even while  

the sender and/or receiver are doing other work
¥ the data moves in large chunks, so it can be ÒpipelinedÓ (or transmitted in an assembly-line 

fashion) to minimize the communication overhead for each individual piece
¥ since data can be buffered on the receiving end, it is often unnecessary to get the sender and 

receiver to synchronize exactly (which can be difÞcult in that environment)

In a low-latency environment, shared memory is often better, because:
¥ the programmer isnÕt bothered with managing data movement
¥ there is no overhead associated with copying the data from place to placeÑeach entity can 

just access the data where it sits
¥ in Òdemand-drivenÓ cases, where the next entity that will need some particular data is not 

known until that entity needs the data, it can be much easier to program

The amount of latency that is tolerable for a shared memory programming model can vary 
depending upon the speciÞc requirements or on the current state-of-the-art.  For example, as pro-
cessors get faster, any delay has a relatively greater effect.  For this reason, even shared-memory 
systems have begun to try to integrate some features of message passing between computing enti-
ties and/or caches.  At its most extreme (when latencies are expected to be pretty high), this 
approach is called distributed shared memory (DSM).  These features may include:
¥ allowing the programmer or runtime system to specify a ÒhomeÓ entity for certain memory 

addresses, designating where they will be accessed most often, so if they are not speciÞcally 
being used elsewhere, they will tends to move toward their home (possibly hiding latency)

¥ allowing the programmer to explicitly prefetch memory to an entitiy before it is actually used, 
again to hide latency

¥ transfering not just the data that is used, but also the data (ÒpageÓ) around it, to pipeline the 
transfer/overhead.  (This can lead to a problem called Òfalse sharingÓ when some of that other 
data is needed on another processor.)

If these approaches to accomodating high-latency while using a shared memory interface worked 
well, one could write a program using a single programming model, without Þrst determining 
whether it would be executed in a high-latency or low-latency environment, or some combination 
(e.g. like clusters of SMPs).  Alas, though adding these features to shared memory have been dem-
onstrated to be somewhat effective in some cases, it is rarely as efÞcient as using message passing 
in high-latency environments, because the hybrid approach often relies on the runtime system to 
guess what (and how much) data will be needed where when.

CDS takes a different approach.  Instead of starting with either message passing or shared mem-
ory, its design was motivated by looking at the advantages of each in different environments (like 
those above) and working toward a common interface with all of those advantages.  The result is a 
small set of more general primitive communication operations which, when used in certain ways 
or combinations, can be made to look like either message passing or shared memory, but which in 
themselves are more ßexible than either.
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There is an advantage (for both CDS and distributed shared memory) which extends beyond sim-
ple latency issues.  Environments differ not only in the way processors are connected, but in how 
many processors there are.  If computing entities running on the same processor can exchange 
data with very little overhead, then they can be viewed very much like subroutines or objects in a 
single entity, rather than as separate entities.  In other words, the number of entities can effectively 
dynamically change (i.e. decrease) to accomodate the number of different processors, so a pro-
gram is not so dependent upon the number of processors.

Having a single programming interface which encompasses others has advantages over simple 
portability.  It canmake programming easier.  No longer must the programmer choose between 
one set of operations (e.g.message passing) and another (e.g. shared memory or distributed shared 
memory, DSM) at the outset.  As shown in the table below, when using CDS, the programmer can 
express exactly what is required for that specific operation, and at runtime, the runtime system 
can use that information, together with the existing hardware configuration and status, to decide 
the most efficient way to perform it.

In the best of all worlds, programmers would not even be exposed to low-level communication 
approaches like shared memory, message passing, or CDS, instead always using higher-level lan-
guages and tools, but (a) a small step is better than no step, and (b) CDS can just as well be con-
sidered as a good way to build high-level programming tools, instead of providing a programmer 
interface.

 

Features

 

C
D
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S
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D
A

 

Some data can be traded/shared in place (true 0 copy!)

 

x x

 

Consumer can pull (get) data from passive producer

 

x x 2 x

 

Consumer can prefetch/prepull data to hide latency

 

x ? 2

 

Producer can push (send) data to passive consumer

 

x x x ?

 

Data can be queued at producer waiting for pull

 

x x x ?

 

Pushed data can be made to overwrite previous value

 

x x x

 

Producer can retain access rights to communicated data

 

x 2 x

 

Producer can relinq access rights to communicated data

 

x x x x

 

Dynamic memory allocation for shared memory

 

x ?

 

Consumer can specify timeout for waiting

 

x ?

 

Supports heterogeneous platforms

 

x x

 

Simplicity (~number of function + macro interfaces)

 

51 20 !!! 13 5
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The CDS Approach

 

CDS accomplishes its seemingly-conßicting goals in kind of a tricky way, which may not be evi-
dent until you hear the whole story.  So, the best way to learn CDS is to just open your mind for a 
bit and forget about shared memory or message passing, or even efÞciency.  Those kinds of issues 
will be addressed in the next section, after explaining the basics of CDS.

Each CDS computing entity is similar in some ways to a thread, sharing information with other 
entities, and in some ways similar to a process, being independent, so here it will just be called a 

 

CCE

 

 (for ÒCDS computing entityÓ).  A CCE declares itself as a CCE (allowing it to call CDS rou-
tines) by calling a special CDS 

 

init

 

 routine, but this will block until or unless the CCE has been 

 

enlisted

 

.  It can be enlisted by another CCE (calling the 

 

enlist

 

 routine), or by the user directly 
(using the 

 

enl

 

 program).  If 

 

enlist

 

 cannot Þnd an appropriate CCE blocked at 

 

init

 

, it will try 
to create one, so enlisting a CCE will often serve both to create it, and then to unblock the 

 

init

 

 
when it is executed.  Each CCE is identiÞed with an integer CCE ID, which is similar to a Þle 
descriptor in that the speciÞc integer used to identify a CCE may depend not only on the CCE 
being identiÞed, but on the CCE holding that identiÞcation.  After a CCE has called 

 

init

 

, it can 
Þnd its own ID, and the ID of the CCE which enlisted it (both in global variables)

 

.

 

Each CCE possesses a logically-private 

 

communication

 

 (or 

 

comm

 

) 

 

heap

 

, which is just a special 
heap of memory that CDS knows about.  A CCE allocates a memory region from this heap by 
using the 

 

rgalloc

 

 operation, which is analogous to the standard C 

 

malloc

 

 routine (e.g. it takes 
a length in bytes), but instead of returning the regionÕs address like 

 

malloc

 

, 

 

rgalloc

 

 returns a 
CDS 

 

region ID

 

, which can be thought of (by the user) as a pointer to the regionÕs addressÑi.e. the 
data can be accessed by using Ò

 

**rgid

 

Ó instead of just Ò

 

*rgptr

 

Ó (as one might use with tradi-
tional 

 

malloc

 

).  There is also an 

 

rgfree

 

 operation in CDS that is analogous to 

 

free

 

 in stan-
dard C, that effectively declares that the CCE will no longer access that region.  Additional 
operations exist to determine the length of an already-allocated region (

 

rglen

 

), and to try to 
change a regionÕs length without moving it (

 

rgrealloc

 

).

Along with a comm heap, each CCE can also have any number of 

 

comm cells

 

 (usually just 
referred to as ÒcellsÓ) which are visible to other CCEs.  (Both the comm heap and the comm cells 

Comm Cells: Logically public set of queues. User is responsible

Comm Heap: Logically private heap.  Data is
optimized for

User is responsible

and/or shrinking.

User code & data:
Standard OS
process or
thread

for enlarging

communication.

for creating
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are created using the 

 

magrow

 

 routine.)  Each cell has an integer name (unique within that CCE), 
so any cell can be addressed by any CCE by naming the CCE that holds it and the cell number 
within that CCE.  Each cell can hold any number of distinct regions, in a queue-like fashion.  
There are four basic communication primitives that operate on cells:
1.

 

zap

 

, which takes a cell address (i.e. CCE name plus integer cell name), and deletes any 
regions which might be sitting in it.

2.

 

put

 

, which takes a region ID and a cell address, and produces a copy of that region at the tail 
of the cell, optionally 

 

zap

 

ping the cell Þrst, and optionally 

 

rgfree

 

ing the region after.
3.

 

putm

 

, which is the same as 

 

put

 

, but takes a list of cell addresses and produces a copy into 
each of them.

4.

 

get

 

, which takes a cell address, and produces a copy of the first region from the cell into 
callerÕs comm heap (and optionally removes it from the cell), returning a region ID to the new 
comm-heap region.

So, thatÕs how CCEÕs in CDS communicate:  They create regions in their comm heaps using 

 

rgalloc

 

, then shuffle and/or copy those regions between their comm heaps through cells using 

 

put

 

 and 

 

get

 

, and eventually relinquish them using 

 

rgfree

 

. There is one more basic rule cover-
ing communication:  If you are going to change data in a region that you obtained with a 

 

get, or 
which you have already put somewhere since you called rgalloc (or rgmod), then you need to 
call rgmod (with the region ID) Þrst.  You donÕt need to tell it what you intend to change, just that 
you intend to change something in that region.  (rgalloc may update the region pointer stored 
in the region ID, i.e. as *rgid, so care must be taken not to save an old value of this pointer into 
a temp variable across a call to rgalloc.)

Sometimes, the data that you need to move from one place to another will be sitting (or need to 
sit) somewhere in the CCEÕs program memory instead of in the comm heap.  It is usually possible 

Comm Heap User Code

rgalloc
rgfree
put

get
zap

Relinquishes access to

Allocates a region in

Copies region from local

cell.  Can zap cell before
and/or rgfree region after.

Copies region from head of any
cell to local comm heap. Can
remove from cell after.  A.K.A.Comm

Cells
(Any
Process)

 

with zap, else ÒenqÓ.

comm heap to end of any

Also known as ÒwriteÓ

local comm heap
 (Òfrees upÓ) a region in

local comm heap

ÒdeqÓ if removed, else ÒreadÓ.
rgmod must be called before
modifying any region after
getting or putting it.
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to just copy the data to/from the comm heap in traditional ways (e.g. using the pointer in the 
region ID, and perhaps memcpy), but CDS provides three more ßexible routines to help;  one to 
copy data to a region from other memory (called copyto), one to copy from a region to other 
memory (called copyfm), and one to copy data between regions (called copytofm).  All of 
these routines take a set of instructions called a copy descriptor (or sometimes likened to a 
ÒtypeÓ), expressed as a sequential array of integers, that allows data of different types and relative 
positions to be copied and packed or unpacked.  Another routine, copytosz, can be used to Þnd 
out how much space a copyto will use in the destination.  For those somewhat-common cases 
when one needs to rgalloc a region (after Þrst determining the size needed with copytosz), 
copyto data to it, and then put it into a cell, CDS offers a single composite routine called send 
which does all of these.   Similarly, there is a recv routine that does the same as a get, a 
copyfm, and an rgfree.

The copy routines are mandatory when moving CCE IDs to/from the comm heap, because CCE 
IDs are not stored as integers within regions.  (They are actually much larger, e.g. 4 words.)  The 
copy routines are also extremely helpful when translating data between heterogeneous processors.  
BCR facilitates this translation by endowing each region with an integer code (called an archtype) 
that tells how that data in the region is representedÑi.e. the kinds of processors that represent 
their data that way.  This code gets passed along with the region from one CCE to the next.  If the 
CCE is running on a processor type that matches the archtype in a region, then it can safely access 
it directly (using the **rgid approach).  Otherwise, the data should probably only be accessed 
using the copy routines, which always convert appropriately based on the archtype.  The archtype 
for a region is set when it is rgallocÕdÑi.e. the archtype defaults to the same as the processor 
creating the region, though this can be overridden by a second argument to rgalloc.  The 
archtype for a particular region can be queried with the rglen routine.  The archtype for the cur-
rent CCE is available in a global variable, archtype, but the archtype corresponding to any CCE 
ID can also be determined with the arch routine (e.g. to be supplied to rgalloc).

To make CDS more familiar to shared memory programmers, a set of operations (often imple-
mented as macros) is provided.  They are based on the principle that putting a region into a cell 
makes it available to other CCEs, which is just what releasing a lock does in a traditional shared 
memory environment, and likewise, getting a region from a cell provides the taker with access to 
it, just as acquiring a lock does.  So, thereÕs an Òacquire read lockÓ (acqrl) operation which is 
really just a read, an Òacquire write lockÓ (acqwl) operation which is really just a deq followed 
by an rgmod, a Òrelease read lockÓ (rlsrl) operation which is really just an rgfree, and a 
Òrelease write lockÓ (rlswl) operation which really just puts the region ID back into a cell.  An 
additional operation to convert a write lock to a read lock (wl2rl)  is the same as atomically  
releasing a write lock and acquiring a read lock, which in this case is optimized by just putting 
the region ID into the cell without rgfreeing it.

Finally, each cell can be endowed with a handler (i.e. user-supplied subroutine) using the han-
dler routine, to be invoked (ÒupcalledÓ) whenever the number of cells exceeds a specified high- 
or low-water mark.  Even if it is invoked, a handler will only run if the currently executing corou-
tine (i.e. handler or main CCE) calls a CDS routine, and has a lower priority than the handler.  The 
priority of a coroutine can be set using the priority routine, and can be temporarily adjusted 
down using the allow routine.
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How It Really  Works
The previous section conveys very few advantages of CDSÕs advantages over shared memory in a 
low-latency environment, especially with all of that copying.  In fact, CDS appears to require even 
more copying (and therefore more overhead) than message passing.  The trick is that the above is 
a logical description, telling you how you can think about CDS when programming.  The physical 
model underneath is (or at least, can be) quite different.  Some people will Þnd the physical model 
confusing, because all of the special cases and tricks can be complex, so always remember that 
you can rely on the simple rules in the logical model.

Four efÞciency tricks rely on these differences between the physical and logical models:

1.  In the logical model, each comm heap is private to its CCE.  In the physical model, each comm 
heap is stored in shared memory, where it can be accessed directly from any CCE that the hard-
ware allows (all such CCEs will be called a ÒCCE groupÓ here), or from a special daemon process 
that helps access that memory for CCEÕs outside of the group.

2. The comm cells donÕt really hold regions that have been copied from the comm heap, they hold 
pointers to regions that are still sitting in the comm heap.

3.  Related to 2, data is rarely copied from place to place.  Instead of copying a region to or from a 
cell belonging to the same CCE group, a pointer to the region is just moved to or from the cell. 
Reference counts are kept with each region to keep track of how many pointers point to it. Data is 
only actually copied in three cases: when accessing a cell in a different group (so the data needs to 
be moved); when modifying (i.e. calling rgmod for) a region targeted by other pointers (as indi-
cated by the internal reference count), and when the copy routines are called explicitly.  (The sec-
ond reason is sometimes called Òcopy on writeÓ.)

4. The send and recv operations can be heavily optimized.  For example, they donÕt really need 
to go through the comm heap at all in some cases, because the region that it says it uses is never 
visible to the caller, anyway.  The data can be moved directly between the communication channel 
and the CCEÕs memory addresses.

As a result of these, CDS has many similarities to shared memory. Different processing entities 
(like threads) communicate through some common memory area that they can all access, and are 
careful when accessing that area to ensure that they cooperate properly, and do not interfere with 
each othersÕ intentions.  The shared area is partitioned into regions which are managed sepa-
ratelyÑi.e. a computing entity obtains access to an entire region at one time, uses it as desired, 
and relinquishes it. Multiple entities can read the same region at the same time.

And, CDS also has similarities to message passing.  A computing entity (the sender) speciÞes 
some data to move and the computing entity (the receiver) where it should moved to (because it 
will likely be used there). The sender and receiver use a common tag to ensure that they are both 
working on the same data. The data can be queued on the receiver until it is needed.
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BCR Application Interface
The BCR C-callable interface is deÞned by 38
routines and/or macros, 4 global variables
(initialized by bcr_init), and several pre-
deÞned constants. Some routines may set
bcr_errno, documented in error.h.
Unless otherwise stated, the preÞx
bcr_ has been omitted in each case.

CCE Control & Comm Area Mgmt

int bcr_init(int flags,
char *ccename)

Declares the calling CCE to be a BCR CCE,
and assigns it a name (currently ignored, but
best equal to Þle name). Must be called before
any other BCR routine. This routine will block
until/unless the CCE is enlisted. flags is
obtained by ÒOR-ingÓ together the BCR fea-
tures required, from the following table:

Global variables are initiated by this call as
follows: bcr_enlistor is set to the CCE ID
of the enlisting CCE; bcr_cce is set to the
new ID of the calling CCE; bcr_archtype is
set to the archtype of this CCE; and
bcr_cceord is set to the ordinal of the calling
CCE (i.e. resulting from the cceord1 argu-
ment to bcr_enlist). The function returns
the ßags which were requested but were not
available in this implementation (i.e. were not
present in bcr_implemented).

If the bcr_user_ca ßag is speciÞed, any
region ID rgid can be cast to type
Òrgid_t**Ó (where rgid_t is the type of
the region) and used to efÞciently and directly
access the data within that regionÑe.g. using
the expression **((rgid_t**)rgid). Since

TABLE 1.  BCR Features

Name (in BCR.h) Meaning
bcr_inorder Make same-source regions 

arrive in order in dest cell
bcr_user_ca Put comm heap in user space
bcr_errors Send error regions on failure
bcr_reliable Guarantee delivery
bcr_timeout Allow positive timeout val-

ues on get
bcr_handlers Allow user handlers (via 

ÒhandlerÓ routine)
bcr_gc Use garbage collection when 

comm heap full
bcr_implemented All of above implemented for 

this machine

CCE C ONTROL  & C OMM  A REA  M GMT
enlist init cagrow cafree
archtype

REGION  O PERATIONS
rgalloc rgmod rgfree rgrealloc
rglen rgwait rgwaitm

COMMUNICATION  O PERATIONS
put get zap putm

COMMUNICATION  M ACROS
write enq writem enqm
read deq

SHARED  M EMORY  O PS /M ACROS
acqrl rlsrl
acqwl rlswl wl2rl

COPYING /T RANSLATION  O PS
copyfm copytofm copyto copytosz

MESSAGE  P ASSING  C OMPOSITE  O PS
send recv sendm

HANDLER  O PERATIONS
handler block allow priority

GLOBAL  V ARIABLES
cce enlistor cceord archtype

#DEFINED IN  BCR.H
BLOCK PENDING FREE NOFREE
(plus init flags, next column)

#DEFINED IN  TYPES.H  (prefixed bcrT_, 
or b crT_1 for descriptor)
CCE CHAR SHORT INT
LONG LONGLONG FLOAT DOUBLE
SKIP_FM SKIP_TO END NEST
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bcr_rgmod, and other operations that implicity
call it (i.e. bcr_copyto, and bcr_copytofm),
may alter the value of *((rgid_t**)rgid),
care should be taken not to rely on this value to
remain constant across calls to these functions.

int bcr_enlist(char *mach,
int prcssr,
int cceord1,
char *obj,
void **rgid,
int nofree)

Enlists a new BCR CCE on machine mach,
processor prcssr. If prcssr is negative, its
absolute value represents the number of CCEs
to be enlisted, on processors to be chosen by
BCR. The Þrst CCE is given a CCE ordinal
(see bcr_cceord) of cceord1, and others
are numbered sequentially after. obj is a
slash-separated path specifying how to locate
and/or invoke the CCE, and currently just rep-
resents the executable Þle on the speciÞed
machine containing the CCE. If rgid is non-
zero, it is taken to be the ID for a region which
is no longer than 64 bytes, and that region is
put in cell 0 of the new CCE before its
bcr_init completes. If nofree is zero, an
implicit bcr_rgfree is performed on rgid.

int bcr_cagrow(int qbase,
int nprivqs,
int ninqs,
int noutqs,
int nioqs,
int nrgns,
int nbytes)

The size of the comm heap is increased by
nbytes bytes. The number of comm cells in
this CCE is increased by the sum of nprivqs,
ninqs, noutqs, and nioqs. (In some future
implementation, these may refer to the number
of cells that are private, enq only, deq only, and
public to other CCEs, respectively.) These
comm cells are capable of holding a total of
nrgns regions at any one time. If possible, the

Þrst comm cell is assigned cell ID qbase.
bcr_cagrow returns the cell ID actually
assigned to the Þrst comm cell.

int bcr_cafree(int qbase)

The comm heap grow request which returned
cell ID qbase is effectively revoked. The cell
IDs (starting with qbase) and communication
heap space allocated by that request may be
made available for reuse by future comm heap
grow requests.

int bcr_arch(int cceid)

Returns the architecture type for CCE cceid.
This is used primarily to compare against the
current architecture (in bcr_archtype) and/or
provide as a second argument to bcr_rgalloc.

Region Operations

void **bcr_rgalloc(int len,
int archtype)

A regionlen bytes long, with architecture type
archtype, is allocated within the comm
heap, and a region ID for that region is
returned. If archtype is 0, bcr_archtype is
used.

int bcr_rgmod(void **rgid)

Informs BCR that the contents of region rgid
will (might) be modiÞed by the user. This rou-
tine may modify the location of the region (i.e.
*rgid).

int bcr_rgfree(void **rgid)

Frees region rgid.

int bcr_rgrealloc(void **rgid,
int newlen)

Attempts to change the size of region rgid to
newlen without performing a copy. Returns
zero if successful.
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int bcr_rglen(void **rgid,
int *archtype)

Returns the length of region rgid in bytes. If
archtype is non-null, it is set to the architec-
ture type of the region.
int bcr_rgwait(void **rgid,

int msec,
int failfree)

This routine is used to check or wait for the
effective completion of a prior bcr_get call
which was invoked with an msec argument
equal to bcr_PENDING. The routine blocks (i.e.
does not return) until region rgid contains
data that can be accessed by the user (in which
case a 1 is returned), or msec milliseconds
have elapsed (in which case a 0 is returned). In
the latter case, if the freefail ßag is true,
then a call to bcr_rgfree is performed implic-
itly, and the previous bcr_get operation is
guaranteed to be unsatisÞed.
int bcr_rgwaitm(int nids,

void ***rgids,
int msec,
int failfree)

This routine is used to check or wait for the
effective completion of one or more prior
bcr_get calls which were invoked with an
msec argument equal to bcr_PENDING.
rgids is an array containing nids region
IDs, and this routine blocks (i.e. does not
return) until at least one contains data that can
be accessed by the user (in which case its
index relative to 1 is returned), or msec milli-
seconds have elapsed (in which case a 0 is
returned). In the latter case, if the freefail
ßag is true, then a call to bcr_rgfree is per-
formed implicitly, and the previous bcr_get
operation is guaranteed to be unsatisÞed.

Comm Cell Manipulation

int bcr_put(int qlike,
void **rgid,

int cce,
int cell,
int nofree)

Adds a copy of region rgid to the end of
comm cell cell in CCE cce. If qlike is
zero, any regions in the cell before the new
region are removed. If nofree is zero, an
implicit bcr_rgfree is performed on rgid.

void **bcr_get(int qlike,
int cce,
int cell,
int msec)

Places a copy of the Þrst region from comm
cell cell into the comm heap for the current
CCE. If qlike is non-zero, that Þrst region is
removed from the cell. If the speciÞed comm
cell is empty, the routine will block for up to
msec milliseconds for the cell to become non-
empty. If msec is negative, the routine blocks
indeÞnitely for the cell to become non-empty.
This routine returns the region ID of the
dequeued region. If no region is found, NULL is
returned.If msec is bcr_PENDING, the routine
always returns a region ID immediately
whether or not the cell has elements but the
data within the region must not be accessed
until veriÞed using bcr_rgwait.

int bcr_zap(int cce, int cell)

Removes all regions from cell cell in CCE
cce.

int bcr_putm(int qlike,
void **rgid,
int ncells,
int *cells,
int nofree)

bcr_putm is identical to bcr_put and except
that it can operate on many cells in many
CCEs with one call. ncells is the number of
cells, and cells is a list of 2*ncells inte-
gers interpreted as (cce,cell) pairs.
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Communication Macros
#define bcr_write(rgid, cce, \

cell, nofree) \
bcr_put(0,rgid, cce, \

cell, nofree)

Add a region to a cell destructively.
#define bcr_enq(rgid, cce, \

cell, nofree) \
bcr_put(1,rgid, cce, \

cell, nofree)

Add a region to a cell non-destructively.
#define bcr_writem(rgid, ncells, \

cells, nofree) \
bcr_putm(0,rgid, ncells, \

cells, nofree)

Add a region to multiple cells destructively.
#define bcr_enqm(rgid, ncells, \

cells, nofree) \
bcr_putm(1,rgid, ncells, \

cells, nofree)

Add a region to multiple cells non-destruc-
tively.
#define bcr_read(cce, cell, msec) \

bcr_get(0, cce, cell, msec)

Copy a region from a cell non-destructively.
#define bcr_deq(cce, cell, msec) \

bcr_get(1, cce, cell, msec)

Copy a region from a cell destructively.

Shared Memory Operations

These operations treat a cell as a lock, and the
region within the cell as being protected by it.
All are equivalent to other operations, so may
be implemented as macros in some cases.
void **bcr_acqrl(int cce,

int cell,
int msec)

Attempts to acquire read lock (corresponding
to cell cell in cce cce) for msec microsecs.
Equivalent to:

bcr_get(0,cce,cell,msec);

Returns the ID of the newly-locked region, as
though from bcr_get. Does not prevent the
region from being locked again (with same
lock), but ensures that writers do not interfere
with readers.
int bcr_rlsrl(void **rgid)

Releases a read lock to the given region.
Equivalent to:

bcr_rgfree(rgid);

The return value is identical to that from
bcr_rgfree

void **bcr_acqwl(int cce,
int cell,
int msec)

Attempts to acquire write lock (corresponding
to cell cell in cce cce) for msec microsecs.
Equivalent to:

rgid = bcr_get(1,cce,cell,msec);
if (rgid) bcr_rgmod(rgid);

Returns the ID of the newly-locked region, as
though from bcr_get. Upon acquiring the
lock, no further attempts to acquire the lock
(by any CCE, for reading or writing) will suc-
ceed until it is relinquished.
int bcr_rlswl(void **rgid,

int cce,
int cell)

Relinquishes a write lock for region rgid to
lock corresponding to cell cell in cce cce.
Lock does not need to be the same as that from
which region was acquired, but should be
empty (i.e. write locked). Equivalent to:

bcr_put(0,rgid,cce,cell, 0);

The return value is identical to that from
bcr_put.
void **bcr_wl2rl(void **rgid,

int cce,
int cell)

Converts a write lock to a read lock, by effec-
tively relinquishing the write lock and then
acquiring a read lock, so descriptions for those
operations apply. Equivalent to:
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bcr_put(0,rgid,cce,cell, 1)

The return value is identical to that from
bcr_put.

Copying/Translation Operations

Copy routines transfer user-space data to or
from a region, as directed by a copy descriptor,
while automatically performing translation as
necessary to adhere to the regionÕs architecture
type code (archtype). The routines take a
buffer in user space (denoted by an address and
a length in bytes), an address in the comm
heap (speciÞed as a region and offset),
and a copy descriptorÑan integer array which
is interpreted by BCR as a sequence of opera-
tions to follow, each of which may result in
data being copied from the source to the desti-
nation, and/or skipped in one and/or the other.
Copying terminates if either the source or des-
tination is exceeded (i.e. attempts to go outside
of the user buffer or the region in the comm
heap), or if all instructions in the copy descrip-
tor have been performed.

The copy descriptor is interpreted as a list of
triples, each having the form
(adjust,type,repl),  where:

adjust is an integer displacement, in bytes,
to take place within the user area relative to the
end of the last operation,

type denotes one or more data types (as
described below) and ßags.  The ßags denote
whether Þelds of that type (those types) are to
be copied (default), or skipped in the source
(the bcrT_SKIP_FM ßag) and/or skipped in the
destination (the bcrT_SKIP_TO ßag), as well
as whether this is the last triple in the copy
descriptor (the bcrT_END ßag)

repl is a replicator, denoting the number of
times to repeat the copy or skip(s) denoted by
type.

The type represents either an atomic type or a
complex type.  An atomic type is a single data

value, and is represented by one of the pre-
deÞned constants bcrT_CHAR, bcrT_SHORT,
bcrT_INT, bcrT_LONG, bcrT_LONGLONG,
bcrT_FLOAT, bcrT_DOUBLE, or bcrT_CCE.  A
complex type is analogous to a record type,
and is denoted by the bcrT_NEST ßag plus an
offset (in triples) to the beginning of the triple
of a new copy descriptor denoting that com-
plex type.  (The intent is for this new copy
descriptor to exist within the same integer
array as the current one, but to begin after the
last triple of the current one.)  This complex
type has the effect of inserting the new copy
descriptor into the current one repl times.
Any bcrT_SKIP_FM and bcrT_SKIP_TO ßags
on a bcrT_NEST apply to all of the triples
within the new copy descriptor.

For convenience, pointers to some simple com-
plete copy descriptors are provided in
types.h, each containing just one field of a
given type, and each having a name of
bcrT_1type, where type is as before (e.g.
CHAR, INT , CCE, etc.).  For example,
bcrT_1INT is defined as:

int bcrT_1INT[3]
 = {0, bcrT_INT|bcrT_END, 1};

To process each triple, adjust is Þrst added
to the user pointer, then the copy and/or skip(s)
take place, performing any padding necessary
(on both source and destination) to adhere to
architecture-speciÞc alignment restrictions.

Possible return values copyfm and copyto are:
n >= 2: Copy descriptor was expended, and n-

2 bytes of source were not copied
(where n-2 might equal 0).

1: Copy descriptor not expended, all of
source read

0: No translation available for archtype
-2: Bad copy descriptor or other arg error

n < -2: Copy descriptor not expended, but n-2
bytes of source were not copied
because destination Þlled up.
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int bcr_copyfm(int *copydesc,
int repl,
void **rgid,
int offset,
void *buffer,
int buflen)

Copies data from region rgid, starting at byte
offset within the region, to user space
address buffer which is buflen bytes long,
according to copy descriptor copydesc pro-
cessed repl times.

int bcr_copyto(int *copydesc,
int repl,
void **rgid,
int offset,
void *buffer,
int buflen)

Copies data to region rgid, starting at byte
offset within the region, from user space
address buffer which is buflen bytes long,
according to copy descriptor copydesc pro-
cessed repl times.

int bcr_copytosz(int *copydesc,
int repl,
int archtype,
int offset,
void *buffer,
int buflen)

Identical to bcr_copyto with identical argu-
ment except that (a) no data is actually copied,
and (b) the return values are different, denoting
the amount of space which would have been
consumed in the region had the copy occurred.
This is used to determine the size of region
required for a subsequent bcr_copyto.  The
buffer argument can be omitted (i.e. null),
but if provided will be used to determine align-
ment only.  No rgid argument is present, but
if a non-zero archtype is provided in its
place, it will be interpreted as the archtype of
the associated region (which will rarely have
any effect).

Possible return values are:
n >= 2: Copy descriptor was expended, some

of source may not have been read, n-2
bytes used in destination (including
original offset).
0:No translation available for
archtype

-1: Bad copy descriptor or other arg error
n <= -2: Copy descriptor not expended, but n-2

bytes used in destination before
source ran out.

Message Passing
The message passing routines are deÞned in 
terms of calls to other routines, but may be 
extensively optimized (i.e. not actually imple-
mented that way).  These are similar to mes-
sage passing routines offered by other 
packages.

int bcr_send(char *buffer,
int len,
int *buftype,
int repl,
int cce,
int cell,
int qlike,
int archtype)

A call to this routine is semantically identical
to the following code:
size = bcr_copytosz(buftype, repl,

0, buffer, len);
if (size < 0) size = -size;
if (size < 2) return -2;
rg = bcr_rgalloc(size-2,archtype);
if (!rg) return -1;
ret = bcr_copyto(buftype, repl,

rg, 0, buffer, len);
if (ret <= 0) return ret;
if (bcr_put(qlike,rg,cce,cell,0))

return -2;
return ret;

The routine is allowed to (effectively) tempo-
rarily extend the comm heap, thereby not 
returning a -1 even in cases where the comm 
heap may otherwise be full.
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int bcr_sendm(char *buffer,
int len,
int *buftype,
int repl,
int ncells,
int cells,
int qlike,
int archtype)

A call to this routine is semantically identical
to the following code (with appropriate error
checking):
rgid = bcr_rgalloc(len, archtype);
bcr_copyto(buftype, repl, rgid, 0,

buffer, len);
bcr_putm(qlike,rgid,ncells,cells,0)
;

int bcr_recv(char *buffer,
int len,
int *buftype,
int repl,
int cce,
int cell,
int qlike,
int msec)

A call to this routine is semantically identical
to the following code (with appropriate error
checking):
rgid =bcr_get(qlike,cce,cell,msec);
bcr_copyfm(buftype, repl, rgid, 0,

buffer, len);
bcr_rgfree(rgid);

Handlers

int bcr_handler(int cell,
void (*han-
dler)(int),
int water_mark,
int activep,
int blockp)

Registers a handler, handler, for comm cell
cell in the current CCE. If water_mark is
non-positive, it represents a low-water-mark,
so the handler will be requested whenever the
cell contains at most |water_mark| regions
when bcr_deq is performed (before removing
the region). If water_mark is positive, it rep-

resents a high-water-mark, so the handler will
be requested whenever the cell contains at least
water_mark regions after a bcr_enq is per-
formed. An invocation of the handler is given a
priority of activep while it is executing (or
waiting to execute) and blockp while it is
blocked (e.g. while waiting for a bcr_deq
operation).

int bcr_priority(int activep,
int blockp)

Alters the priority of the calling handler invo-
cation to be activep while it is executing
(or waiting to execute) and blockp while it is
blocked (e.g. while waiting for a bcr_deq
operation).

int bcr_allow(int priority)

Allows requested handlers with priority of at
least priority to be invoked within the cur-
rent thread by temporarily altering the priority
of the calling handler invocation to be pri-
ority. If priority is negative, the active prior-
ity of the calling routine is used.
int bcr_block()

Effectively performs bcr_allow(0) forever. A 
call to this routine never returns, and is used 
when all further processing for the current 
CCE is to be performed by handlers.
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Coding Hints
If you are very familiar with message passing and/or shared memory, and perhaps have already 
written your software to use one or the other, the quickest way to make use of CDS/BCR is prob-
ably to Þrst use the CDS analogies (e.g. the send and recv routines, or the ÒlockingÓ macros), 
and then (over time) to determine when adherence to those traditional paradigms interferes with 
the optimal efÞciency and/or understandability of the program, converting the individual commu-
nications over time as necessary to a more ÒCDS-nativeÓ style.  This section will not discuss the 
conversion process, in part because not everyone will start there.  It will, however, discuss this 
ÒCDS-nativeÓ style.  Many of the aspects described here are used in programs present in the test 
directory (e.g. ring.c).

Basics
Planning a CDS program is similar to planning any other sort of concurrent programÑi.e. Þgur-
ing what computation can be occurring in parallel with what other, and what data needs to move 
between the pieces. It differs even here, though, because the programmer is not so bound to 
matching the number of computational piecesÑCCEsÑto the number of processors.  In this 
sense, it is more instructive to think of CCEs as Òportable threadsÓ than as processes like one 
would use in a message-passing program.  (Similar to the way ÒrealÓ threads may physically share 
some data space, these CCEÕs logically share access to that data, which may or may not be imple-
mented using physical sharing.)  In some sense, then, the more CCEÕs, the more ßexibility, since 
the larger number of processors that can be productively accomodated.  (Such a view is more 
likely to be productive in the future, when CCEs may be implemented literally as OS threads, thus 
minimizing scheduling overhead.)

The next uniqueness in CDS programming is in specifying which data (i.e. regions) will be used 
where (i.e. in which CCE) and when.  In traditional message passing, the programmer thinks in a 
ÒpushÓ mindset, where each data producer must know who will consume.  In traditional shared 
memory, the programmer thinks in a ÒdemandÓ mindset, and a producer cannot provide informa-
tion about the eventual consumer even if known.  In CDS, the programmer provides the informa-
tion s/he knows about the consumerÕs location when s/he knows it.  If the producer doesnÕt know 
who will consume, the producer generally puts the data into a local cell, to minimize the likeli-
hood that the put operation will result in latency, even if the get from the consumer eventually 
might.  Even in this case, if a potentially-distant consumer realizes that it will need the data but 
doesnÕt need it right now, it can issue a PENDING get, which will effectively prefetch the data.  (In 
this case, the consumer must issue an rgwait before actually accessing the region.)  Of course, 
maximum latency-hiding opportunities still result from putting the data directly to into a cell at its 
eventual destination, if this is known when the put operation is performed.

Message passing programmers will often stop there, thinking only about how much data needs to 
be moved where and when.  The CDS programmer gets extra points for leaving data in the comm 
heap (i.e. within the region), and for regions that are only read, not written, by some CCEs (at 
least for some period of time).  These will provide maximum opportunity for communication 
without copying, and for having multiple CCEs accessing the same region at the same time.  
Trade-offs are deÞnitely involved even stillÑe.g. does it make more sense to put logically-related 
data into two separate regions, just because some of it will be modiÞed often while other rarely?  
It will most certainly depend on the program and probabilities of encountering latency.
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For those programs that beneÞt greatly by having the data in their private (non-comm heap) mem-
ory, perhaps in an unpacked/scattered form, they should use the send and recv operations 
whenever they apply (instead of the corresponding primitive operations) since the combined oper-
ations provide the most opportunity for CDS to optimize out superßuous copying (though the cur-
rent BCR version does not highly optimize these operations).

This leaves the very basics of programming, and managing the resulting complexity.  For the most 
part, managing cell numbers is very similar to managing tags in a message passing program.  That 
is, a given cell usually accomodates a particular kind of region, though there are cases when a sin-
gle cell can be used as a collection point for many different kinds of regions which are identiÞed 
programmatically by data within each region.  When using a shared-memory paradigm (e.g. using 
the macros), each cell corresponds roughly to a lock, but its location also represents a ÒhomeÓ for 
the covered region.  This, unfortunately, has many of the same sorts of disadvantages that home 
processors in DSM systemsÑi.e. the data may end up in a different place than you know it well 
be needed next.  For this reason, if a shared region is known to go through different phases where 
it will be needed in different CCEs, it is often productive to assign it several cells (ÒlocksÓ), each 
designating an upcoming phase and each local to the CCE which will be processing the data in 
that phase.

Heterogeneous Platforms
It is possible to write CDS programs to run on collections of machines having heterogeneous data 
representations.  The simplest approach is to never access data in place within a region, but 
instead to always use copyfm and copyto (or send and recv) when accessing that data, thus 
translating it automatically.  Of course, this simple approach dispenses with many of the efÞcien-
cies offered by CDS (i.e. avoiding conversion when not really required).  On the other hand, mak-
ing each individual access to region data conditional on whether or not conversion is required can 
be very complex and error-prone.  In most cases, a middle ground is possible.  After the region 
comes in, it is easy to determine whether conversion is necessary (by comparing its archtype with 
bcr_archtype), and if so, copyfm the data to a buffer in user space and create a pointer to it.  
If conversion is not necessary, create a pointer (in the same variable) to the region itself.  From 
that point on, all access is through the pointer, regardless of how the pointer was created.

To see how this works, consider routines xptr and xupdt, as deÞned here (and in test direc-
tory Þle hetero.c), both which take a region ID (rgn), a copy descriptor for that region (called 
here rgntyp), a buffer large enough to hold the native region data (rgntmp), and the size of that 
buffer (rgntmpsz):

void *xptr(void **rgn, int *rgntyp, void *rgntmp, int rgntmpsz)
{

int archtype;
bcr_rglen(rgn, &archtype);
if (archtype == bcr_archtype) {
    return *rgn;
} else {
    bcr_copyfm(rgntyp, 1, rgn, 0, rgntmp, rgntmpsz);
    return rgntmp;
}
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}
void xupdt(void **rgn, int *rgntyp, void *rgntmp, int rgntmpsz)
{

int archtype;
bcr_rglen(rgn, &archtype);
if (archtype == bcr_archtype) {
  bcr_copyto(rgntyp, 1, rgn, 0, rgntmp, rgntmpsz);
}

}

These are used as follows.  After a CCE gets a region to access, it must Þrst call rgmod if it 
plans to change the data in the region, then (in any case) can call xptr to get a pointer to the 
region data, at which time data conversion will be silently performed if necessary.  If the CCE 
ultimately updates the region data (through that pointer), xupdt should be called (with the same 
arguments) before putting the region into a cell, allowing the data to be silently converted back to 
the archtype of the region, if necessary.  If the process does not rgfree the region during the 
put, it can continue using the existing pointerÑunless it might modify the region data, in which 
case it must call rgmod and xptr again.  Note that this ÒxptrÓ approach does not work well if 
rgntyp contains some CCE IDs, unless all of them are at the end of the region and the caller 
doesnÕt need to access them, since CCE IDs must be converted through the copy routines to be 
useful, and the room taken by a native CCE ID in the region will be very different than the size of 
a converted CCE ID in the rgntmp buffer.  When CCE IDs do need to be accessed, hybrid 
approaches can sometimes be developed, e.g. by handling the CCE part of the region indepen-
dently from the non-CCE part.

Starting Up The Program
The CDS enlist and init operations, which are used to start the CCEs of a program, are more 
powerful and ßexible than many programs will need.  In most cases, then, a user program will not 
use them directly, but will instead call a library function which makes use of them to create CCEs 
in a certain topology, or with certain startup conditions.  Some examples of such functions are in 
the startup.c Þle in the test directory of the distribution.  In that light, this section should be 
interpreted as techniques for writing and/or understanding those higher-level library functions, 
rather than information that would be needed when writing most user programs.

To start up a CCE ÒcleanlyÓ, the Þrst thing to realize is that no other CCE can possibly access the 
cells in a new CCE unless they know its ID, and they canÕt know of its ID until it (or a CCE it has 
told) tells them.  CDS does not give that ID to any CCE except for the new CCE itself, not even 
the enlistor.  Likewise, the new CCE cannot inform any other CCE of its ID unless it knows their 
ID.  Since a new CCE always knows its enlistorÕs ID, one common user-enforced protocol is for 
the enlistor to get a region (the so-called ÒbirthcryÓ) from the new CCE (in one of the enlistorÕs 
cells) containing the new ID. This get should have a timeout value speciÞed to account for the 
case where the new CCE never succeeds in producing the birthcry. (If the enlistor can do produc-
tive work between the enlist and the get, it may be able to completely hide CCE creation 
overhead.) Alternate startup protocols can be invented by having the enlistor provide the ID for 
one or more other CCEs within the enlistment message itself.  In any case, the new CCE is anon-
ymous between the time that it calls init and the time that it puts its ID into another CCEÕs cell, 
so the intervening interval is precisely when it should call magrow to create its comm area (i.e. 
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comm heap and comm cells):  Waiting until after it performs the put runs the risk of other CCEs 
attempting to access the cells before they exist.  Note that the comm heap can become fragmented 
over time, so to ensure that sufÞcient space will be available for any particular region, it should be 
created twice as large as the total data that may actually be stored at any one time.

The property that one CCE cannot access cells within another without the otherÕs ID can be used 
to implement information hidingÑi.e. by allowing one CCE to have the ID of another only if it 
has good reason to access its cells.  Since the enlistor and new child will often learn each others 
IDs during the enlistment process, there are limits to this, but it works to a degree.

Handlers
Handlers can be used as sort of a poor manÕs interrupt mechanism, or as a means for allowing 
emergency action to occur when a particular cell gets too empty or too full.  They can even facili-
tate a complete demand-driven programming methodology, where the main program effectively 
stops (using the bcr_block operation), and all subsequent activity occurs within handlers.

A primary trick (and restriction) in the use of handlers is to understand that the appropriate condi-
tions on the cell only cause the handler to be requested, not started.  The handler is only started if 
the request is noticed by BCR, and the priority of the request is at least as high as the priority of 
the current execution.  At this writing, BCR only notices requests if it blocks (or has the potential 
for blocking), so the activep priority actually has little meaning, but if overhead can be kept 
low, such checks may be installed at every call to BCR.

One of the most interesting operations is to install a handler with a low-water mark of 0, meaning 
that the handler will be requested only if a get is performed on the empty cell.  The handler can 
therefore wait until a get has been issued to put a region into the cell to satisfy it. 
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Installing BCR
The easiest way to try out BCR is to put the bcr.tar.gz Þle into your home directory on each 
machine you will run it on, decompress it, and untar itÑi.e.

gunzip bcr.tar.gz
tar -xvf bcr.tar

This will create a directory called BCR on that machine with subdirectories named test, bin, 
include, and lib.  lib holds the BCR library libbcr.a, bin holds the BCR daemon enl, 
include holds the files bcr.h, types.h, and error.h, and test holds some test software 
and a makefile for building it.

Please read the README Þle and the LICENSE Þle.  Using any of this software implies that you 
agree with the terms listed in these Þles, so if you donÕt like them, please delete all and stop.

lpr BCR/README
lpr BCR/LICENSE

Nothing needs to be (or should be) moved from these locations to use BCRÑe.g. by default, this 
is where BCR will expect to Þnd the enl program/daemon. To change this assumption, or several 
other ones (e.g. where to Þnd the program to open a new window (xterm), to start a new process 
(rsh), or ...), look at the bcrrc Þle description in a subsequent section.  You can also simplify 
matters by adding the BCR/bin directory to your path.

Compiling and Linking a BCR Program
When a BCR program is compiled, it must have access to the bcr.h include Þle, and when it is 
loaded it must have access to the libbcr.a library.  The easiest way to see what is required is to 
view the sample source Þles and makeÞle in BCR/test.  It is recommended that you try compil-
ing these by changing to the BCR/test directory and running the makefile:

cd BCR/test
make

Depending on your system, you may need to change the compiler or other tools referenced in the 
makeÞle, as indicated in comments.  No errors or warnings should result in a correct execution.
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Running a BCR Program
A BCR program can be started (i.e. enlisted) in two different ways:

1.  Just starting the Þrst (or ÒrootÓ) CCE from the shell (i.e. by typing the name of the program)

2.  Running the enl program, providing the name of the Þle containing the root CCE as an option.

In either case, the user (i.e. terminal) ends up attached to the enl daemon, with the new user pro-
cess running as its child, by the time the init call has completed within that process.  In the Þrst 
case, the program must be initiated from the userÕs home directory, or the BCR/bin must be set 
permanently within the userÕs path, because BCR will (by default) expect to Þnd the enl pro-
gram/daemon at the relative location BCR/bin/enl (though this can be changed by using the 
bcrrc file). The first approach is obviously the simplest, but the enl program allows some addi-
tional options that can be speciÞed (e.g. for debugging), discussed below.  Also, in the Þrst 
approach, the OS process ID (not CCE ID!) of the program changes when it calls init, but in the 
second case it doesnÕt, which could theoretically be important in some special applications.   
Regardless of how the program is started/enlisted, it can be aborted (usually!) by simply killing 
the process or daemon (e.g. with a control-C).  By default, if any process terminates abnormally, 
the entire program will terminate, including any daemons which have started up.

When it starts, BCR assigns a name to the entire program, constructed from the name (or ip num-
ber) of the machine it started on and the OS process ID of the enl daemon on that machine.  As 
the BCR program runs, each machine involved in the execution will automatically get its own 
daemon, and each daemon will get a daemon log Þle with the name bcr.xxx.log in its /tmp 
directory (or other location if changed in bcrrc), where xxx is the BCR-generated program-wide 
name.  If something goes wrong, this Þle is often a good place to look.  BCR can be conÞgured 
(through the ÒstartscriptÓ and ÒendscriptÓ variables in bcrrc) to move these log Þles to a more 
directory (e.g. on the Þrst machine) as the daemons terminate, to make them more easily accessi-
ble.

The root CCE is the only one which should depend on having access to stdin, stdout, and stderr 
Þles.  These are closed for other CCEÕs, though the CCE itself is free to again re-open them as 
desired.

Using enl, it is possible to initiate a BCR program so that, each time a new CCE starts up, a new 
X window is opened running a debugger, and the new CCE is left in an initial state within that 
debugger.  (Use of this feature may be problematic in secure environments.)  To do this, the enl -d 
and -D switches are used to specify the debugger to be used, and the display upon which to open 
the windows, respectively.  For example, to run the ring test program from the userÕs home 
directory, using the gdb debugger and displaying the windows on the main display of machine 
foobaz, one might use the command:

enl -d gdb -D foobaz:0 BCR/test/ring
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Running the test Programs
There are (at least) three programs in the BCR/test directory which may be worth investigating 
and/or executing.  The most complex and indepth of these is ring, which creates a ring of CCEs 
on processors speciÞed by the user (in a Þle), then passes regions among them, both in an Òall-to-
all reductionÓ fashion and around the ring, printing various statistics on latency and throughput.  
Another, consisting of ÒthrupÓ and ÒthrutÓ (Òthrough putÓ and Òthrough takeÓ) simply blasts a 
large number of large regions from one CCE (thrup) to the other (thrut).  Another, timeout, 
simply allows several gets to timeout and then determines how close the actual time taken is to 
that requested.

All of the issues described in the previous section (Running a BCR Program) apply, so unless the 
user has added BCR/bin to their path, these programs should be invoked from the userÕs home 
directory.

ring

Before running ring, the user should create a Þle named machines in the directory from which 
the program will be invoked (e.g. the userÕs home directory), and Þll it with machine names (or IP 
addresses), one per line (with an effect described shortly).  Each of these machines must have 
BCR installed in the home directory, with ring present and compiled in the test directory.

The program will Þrst request and accept 4 integer inputs from the user:
¥ The number of CCEs to create (in the ring).  The Þrst CCE (i.e. that requesting this input) will 

become one of these, so one fewer CCE than the number entered will be enlisted (invoked).  
Each CCE will be enlisted on the next sequential machine listed in the machines Þle, start-
ing at its beginning and rewinding it if more CCEs are requested than there are machines on 
the Þle.  It is perfectly legal to repeat machine names on that Þle.

¥ The minimum and maximum region size to be passed around the ring, log base 10.  Region 
sizes will vary by factors of 10, so an input of 0 and 3 for these values result in regions of size 
1, 10, 100, and 1000 being passed.

¥ The number of times to pass each region around the ring.

The program Þrst reads the machine names, then starts the CCEs using the start_ring routine 
in startup.c and reports the time this takes.  (If option REDUCE is deÞned, it then performs a 
reduction all-to-all operation using a parallel preÞx on the ring.)  It then just passes regions around 
the ring as requested by the inputs, timing each.  Note that the statistics that it reports are Òeffec-
tiveÓ, rather than actual.  That is, if regions are passed between CCEs on the same processor, then 
it is counted as though all of the bytes move from one to the other, even though all that really hap-
pens (internally) is that a pointer is added and removed from a cell.

thrup and thrut
The user starts thrut (the ÒtakerÓ), and provides the name of the machine on which to start 
thrup (the ÒputterÓ).  thrut then starts thrup, and thrup puts several large regions into a cell 
in thrut without waiting for any intervening communication from thrut.  thrup determines 
how long this takes, and thrup reports it.  This program is intended to give a feeling for band-
width.
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timeout

Extremely simple program which tries to get regions (which will never arrive) and then reports 
how low long it took for them not to arrive (after timing out).
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The BCRRC Options
Each time a BCR daemon (i.e. enl) runs and/or init is called, BCR looks for conÞguration opions 
in two places:  /usr/lib/bcrrc (no dot!), and in  Ò.bcrrcÓ (with dot!) in the userÕs home 
directory.  If both are present, the options in the Þrst will be read, and then those in the second will 
be read, perhaps overriding them.  Any of the options not found will be assigned default values, 
described here.

Each option in these Þles must be speciÞed in the form

keyword value

The possible keywords, and the meaning and default value for each, is described here.   Note that, 
for those defaulting to a commonly-available program, replacing it with another program will 
only be successful if the arguments for the new program are similar to the default one.

xtermpath

The path of the program BCR should use to open a new window.  The default is /usr/X11R6/
bin/xterm, except on Solaris systems, where it is /usr/openwin/bin/xterm

enlistpath

The path of the enl program.  Please note that this is used when initiating the daemon on other 
machines, so things are not going to work well unless enl is in the same place on every machine 
(at least relative to the userÕs home directory).  The default is BCR/bin/enl

rshpath

The path of the program BCR should use to start a process on another machine.  The default is
/usr/bin/rsh, and some sites may find this problematic because of security concerns.  Under 
some circumstances, it may be possible to specify an ssh program here, but one must be cogni-
zant that BCR is not currently conÞgured to expect any sort of password-oriented security to be 
involved when starting a new process.

tempdir

The directory where BCR will expect to create its daemon log Þle, as well as certain other tempo-
rary Þles which are likely to have the same name across all machines (i.e. shared-memory pools) 
that BCR accesses.  BCR attempts to delete all Þles after each execution, except for the log Þle 
which will remain unless explicitly managed by the endscript (below).  Default is /tmp

startscript

The name of a program or script to be executed by the enl daemon each time it starts up.  It will 
be provided with four arguments:
1. a zero (0)
2. the BCR program-wide name (used to build the name of the daemon log Þle)
3. the IP address of the machine on which the program was started
4. a 1 if this machine where the program was started, else 0

A common function for this script will be to do nothing, unless the last argument is a one, in 
which case it creates a directory in /tmp to collect log Þles from the endscript on other machines 
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(e.g. see logscript in the /BCR/test directory).  If this option is given the value * (i.e. aster-
isk), it will be taken to mean that no startscript should be initiated.  The default value is *

endscript

The name of a program or script to be executed by the enl daemon just before it shuts down.  It 
will be provided with the same four arguments as for the startscript (if any), except the Þrst will be 
a one (1) instead of zero, allowing the same script to be used for both the startscript and endscript.  
A common function for this script will be to delete the daemon log Þle from the /tmp directory 
after either inspecting it or copying (remote copying) it to a directory on the root machine (e.g. 
created by the startscript on that machine).  See logscript in the /BCR/test directory for 
how this might work.  If this option is given the value * (i.e. asterisk), it will be taken to mean that 
no endscript should be executed.  The default value is *

ifacesuffix

A string to be appended to the end of any machine name speciÞed in a call to enlist.  This is 
provided in the expectation that such sufÞxes will often designate different interfaces, using dif-
ferent networks, to the same machine, so this can be used to easily experiment with different net-
work types.  A value of * (asterisk) designates that no string will be added.  The default value is *

packwords

The maximum number of 4-byte payload words to (not including BCR header data) to include in 
a UDP packet.  The number of words will be smaller if the receiving machine uses a smaller 
value.  Default is 4092.
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When Things Go Wrong: A Peek Under the Covers
The BCR daemons on each machine do their best to watch over the execution of the BCR pro-
gram on their machine, and to communicate with each other when necessary to spread the word 
when things go wrong (or a program terminates normally) so that things can be shut down cleanly.  
However, when something goes wrong (a bug?) within the daemon itself, various trash may be left 
around, and/or the program may (at least appear to) refuse to terminate.  Cleaning up the mess is 
often not fun, especially since it may be scattered over several machines.  (Cleaning may not even 
be necessary in some cases.)  This section will outline what kinds of trash may be left around and 
how to clean it up.

Some signs that something went wrong:
¥ Your program doesnÕt stop normally, or with control-C (though it is best to wait a few seconds 

to see if it is just waiting for unackÕd outgoing packets to timeout)
¥ Your program has apparently terminated (or been killed), but not normally. Check any:

¥ A Þle in /tmp has a name that starts with Òbcr.Ó but does not end with Ò.logÓ
¥ A user process corresponding to your BCR program is running, but no process named enl 

is running.
¥ The ipcs command shows unusual shared memory (shm) segments (i.e. which canÕt be 

explained by other operations).

Processes
The three kinds of processes which constitute a BCR execution are the user processes constituting 
the CCEs (which should be easily recognized), the BCR daemon (called enl), and sometimes 
rsh processes (which are created when this enl daemon starts daemons on other machines, and 
usually hang around until the other daemon completes).  The one enl daemon per program per 
machine is the parent of all of the user and rsh processes for that program on that machine, so if 
the daemon is not running but one or more of the other processes are, then something is deÞnitely 
amiss, and the processes have been orphaned.  An rsh process will also signify that a daemon is 
still running on another processor as well.

The enl daemons form a tree topology, and each knows which daemon started it (i.e. its ancestor 
in the tree).  In the normal shutdown sequence, when a daemon sees any sort of problem (e.g. one 
of its child daemons or processes dies, or its parent daemon reports a problem), then the daemon 
tries to kill all of the user processes on the machine, and inform all of the daemons that it started 
(its children) that there is a problem.  The daemon itself tries not to die unless all of its children 
have died, so if some process anywhere along the way does not die, itÕs as though a domino didnÕt 
tip, and the whole thing can lock up.  Guessing which domino is the problem.

To clean up, it is recommended to begin with the main machine, where the program was started, 
and if the daemon is running, kill it, Þrst normally, then with signal 9:

kill procno
kill -9 procno

If the Þrst kill works, it will probably take the rest of the program with it.  If not, then you may 
need to kill the other processes manually, again Þrst normally and then with signal 9.  If you kill 
an rsh, it may very well propogate the kill signal to the corresponding daemon on the remote 
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processor and shut down that branch of the tree normally.  Otherwise, you must repeat this there.

Shared Memory Segments
BCR typically creates one shared memory segment on each machine (the Òmachine segmentÓ), 
plus one each time new comm area is needed (e.g. with each call to magrow).  These are usually 
cleaned up automatically when the daemon Þnishes.  They can usually be seen (i.e. while the pro-
gram is running, or if it didnÕt terminate correctly) with a command called ipcs.  Depending 
upon the OS (and version) that you are running, there may also be many many segments that have 
nothing to do with BCR.  BCR segments have no special qualities to identify them, though the OS 
segments usually have some very predictable size (e.g. 32K).

It may not hurt to just leave extra shared memory segments lying around, but that will depend 
upon the OS and its conÞguration.  Segments can usually be removed with the ipcrm command, 
but the way to do so will also depend on the OS and version.  (It often requires a switch like -M or 
shm, plus some ID that can be extracted from the ipcs report.)

Temp Directory (/tmp)
BCR creates two Þles in the /tmp directory (or whatever directory has been speciÞed as the temp 
directory in the BCRRC Þle).  They are the daemon log Þle and the daemon exec Þle.  Both have 
names starting with bcr.name, where name is the BCR-assigned program name, but the exec 
Þle has no further sufÞx, while the log Þle has the sufÞx Ò.logÓ.

The presence of the log Þle does not indicate a problem, as it is left in /tmp by default.  The exec 
Þle is deleted by the daemon when it terminates.  If it is left behind from a termination problem, it 
will rarely cause a problem (since there is unlikely to be another program with exactly the same 
name that would conßict with it), but it can be safely deleted.
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Conclusion
CDS, as described here, has been the result of years of experimentation and study within (and 
prior to) Elepar, and experience with other similar projects.  However, there is undoubtedly still a 
great deal of work to be done, both in reÞnement and extension of the interface itself to meet the 
needs of a variety of users, and the standardization of that interface.  Elepar welcomes others to 
consider these issues and volunteer their ideas, either to Elepar directly (e.g. at feed-
back@elepar.com) or in a broader venue.  Elepar has set up a discussion list, called cds-std at 
Yahoo groups, to help accomodate such discussion until and unless other venues appear. 


