
 

Cooperative Data Sharing (CDS):
A Library Interface for Building

Scalable Portable Parallel Programs

 

elepar
Beaverton, OR

moreinfo@elepar.com
http://www.elepar.com



 

How CDS Fits Into The Big Picture

F-Nets formal
model (aka

Software Cabling
Graphical Language

Abstract Owner
(AO) Grid Resource
Allocation model

ÒThe GridÓ

Assorted OO &
Data Parallel
Concepts

OGI

elepar
NASA Ames

Information Power
Grid Distributed
Architecture Plan

International
Grid Forum

Where it was done:

Sharing (CDS) lib
Cooperative Data

Large Grain
Data Flow (LGDF)

MPI

LGDF2)



 

Why Message Passing

 

Usually used for high-latency (e.g. distributed memory) architectures, 
because:

¥ Messaging data to local memory (from distant) decreases 
costly remote accesses over slow interconnect

¥ Initiation of transfer before destination needs data 
decreases lag caused by interconnect latency

Usually not used for low-latency (e.g. shared bus) architectures, 
because:

¥ Copying data often serves no purpose, just increases 
latency, decreases bandwidth

¥ Initiating message before receiver offers a buffer requires 
additional buffering, which may serve no purpose.



 

Why Shared Memory

 

Usually used for low-latency (e.g. shared-bus) architectures, because:
¥ Easier to access each datum where it is
¥ DoesnÕt hurt much to experience latency of demand and 

delivery for each

Usually not used for high-latency (e.g. distributed-memory 
architectures) because:

¥ Cannot move data toward next processor before it is 
requested (to hide latency) even if previous process knows 
where it will be needed next

¥ Requests are always made in small granularity, so multiple 
requests must be made to move much data, each datum 
experiencing the latency of the interconnect twice



 

Comparison of Semantic Options

 

* Linda uses preprocessor to identify these automatically

 

Model-->

Semantic option available

M
P
I

L
i
n
d
a

R 
K

(D)
S
M

C
D
S

 

Non-destructive write (enqueue) X X X X
Destructive write (overwrite) X X
Destructive read (dequeue) X X X X
Non-destructive read (read) X X X

Keep copy of communicated data X X X
Dont Ò Ò X X X

Identify consumer X * X X
Dont Ò Ò X X X

Identify producer X * X
Dont Ò Ò X X X X X



 

Cooperative Data Sharing (CDS) Goals

 

CanÕt continue to program as though we know what the latency 
relationship will be between each process at runtime! 

¥ Architectures are getting more complex (e.g. clusters, 
grids), so even on a single architecture, there may be a mix 
of latencies

¥ Moving to a new architecture (even to a uniprocessor) 
means rewriting application

¥ Even when ÒnativeÓ semantics arenÕt optimal, they are still 
sometimes desirable

Main idea: Let programmer specify desired semantics for EACH 
communication (i.e. policy), let runtime system optimize it based on 
current architectural and run-time state (i.e. mechanism)

AND KEEP IT SMALL AND SIMPLE!



 

A Process in CDS (Logically)

Comm Cells: Logically global set of queues (of regions). User is
 responsible for creating and deleting, in groups

Comm Heap: Can be treated like standard
heap: i.e. malloc, free. Holds data
on its way to or from a Comm Cell.
User is responsible for enlarging
and/or shrinking.

User code & data: Standard
Unix process.

Primitives logically move data
between local comm heap
and any comm cell.

called contexts.



 

Basic CDS Primitives (Logically)

enq & write are cases of put; deq & read of get
Most have a timeout value, and puts can also perform rgfree

rgalloc
rgfree
enq

deq
write

read
zap

Comm Cells
(any process)

Local
Comm
Heap

User
Code



 

Basic CDS Primitives (Logically)

C.Heap Code

Code

Code

Code

C.Heap

C.Heap C.Heap



 

CDS Primitives (Physically)

Node 1 Node 2
Node 3

da
em

on
da

em
on

daemon



 

Making Logical & Physical Conform

 

Same physical region may end up as multiple logical regions! So...

If a process is going to modify a region, it must notify CDS Þrst!
(unless the region has never been shared)

Notify CDS using special arguments on standard CDS primitives, or 
a special

 

 rgmod

 

 primitive for other cases

How it works (fairly standard ÒCopy on writeÓ):
¥ Each physical region contains a hidden reference count
¥ If other refs to a region exist when modiÞcation is 

requested, a copy is made (under the covers)
¥ Region IDs are handles (i.e. pointers to pointers), so region 

ID itself doesnÕt change even if copy occurs



 

A Few Extras

 

benq

 

 like 

 

enq

 

, but blocks until
¥ the cell being written to is empty and
¥ there is a pending 

 

deq

 

 for the cell

...so, with a zero time-out, similar to MPI Òready sendÓ, with inÞnite 
time-out, similar to MPI Òsynchronous sendÓ

 

enqm

 

, 

 

writem

 

, and 

 

benqm

 

 are multicast versions of 

 

enq

 

, 

 

write

 

, 
and 

 

benq

ideq

 

, 

 

iread

 

, and 

 

ibenq

 

 are non-blocking versions of 

 

deq

 

, 

 

read

 

, 
and 

 

benq



 

CDS Basic Primitives: Syntax

 

write(rgid,proc,cntxt,cell,perm) 
enq (rgid,proc,cntxt,cell,perm,blktime) 
benq(rgid,proc,cntxt,cell,perm,timeout) 
read(&rgid,proc,cntxt,cell,perm,timeout) 
deq (&rgid,proc,cntxt,cell,perm,timeout) 
ideq(&ithrd,&rgid,proc,cntxt,cell,perm,timeout) 
zap(proc,cntxt,cell) 
iread(&ithrd,&rgid,proc,cntxt,cell,perm,timeout) 
ibenq(&ithrd,rgid,proc,cntxt,cell,perm,timeout) 
wait(ithrd)
waitm(nthrds,ithrds)
rgalloc(size)
rgmod(rgid,blktime)
rgfree(rgid)



 

Process Initiation: enlist

 

enlist brings a process into CDS program (creating it if necessary)
¥ New process has context w/1 comm cell, small comm heap
¥ Region can be put into cell as part of enlist operation
¥ New process is told ID of its enlistor
¥ Enlistor does not block, and is not told ID of new process

Typical enlistor protocol:
¥ Enlists process, passing it any necessary info
¥ If error region received, or no word comes in reasonable 

time, something went wrong

Typical new process protocol:
¥ Augment comm heap and add contexts as necessary
¥ Report presence to another process (often parent) with put



Handlers (ÒInterruptsÓ)
Any cell can be augmented with a high or low water mark, and a 
handler (i.e. function). Handlers (and the ÒmainlineÓ or main thread) 
can be given priorities.

Low-water mark: Handler initiated before get if cell contains that 
number of regions or fewer. (Consider 0.)

High-water mark: Handler executed after put if cell contains that 
number of regions or more. (Consider 1.)

Handler may be executed in a new thread, or within current thread 
(as coroutine). In latter case, thread initiations and switches occur 
only when CDS is entered for some reason.



Copying and Heterogeneous Communication
copyto, copyfm, copytofm perform

¥ copying between memory and CDS region (in comm heap) or 
2 CDS regions

¥ packing and unpacking (marshalling/demarshalling)
¥ data translation (e.g. between heterogeneous representations)

For copying and packing, copy routines are controlled by nested 
sequence of integer triples, which serves same basic purpose as MPI 
type but easier to build and manipulate.

(offset,type,replicator)

transtab takes two process IDs and returns name of conversion 
table (suitable for use by copy routines) for translating between their 
data representations.



Shared Memory Semantics
enqing a region into a cell makes that region accessible to other 
processesÑi.e. like releasing a lock on the region

deqing a region from a cell makes that region accessible to you, but 
removes accessibility to other processesÑlike acquiring a lock

Additional (macro-like) extensions simplify using CDS in a Òshared 
memory with release consistency styleÓ:

Also asynchronous routines iacqwl, iacqrl

Function/Macro Meaning Translates Into
acqwl Acquire write lock deq w/modify
rlswl Release write lock write, rgfree
acqrl Acquire read lock read (no modify)
rlsrl Release read lock rgfree
wl2rl Convert write lock to 

read lock
write (no modify)



Message Passing Semantics
Consider additional composite functions deÞned as follows:

* except lack of comm heap space may not result in error

¥ Region used does not exist before or after function call
--> the region can be optimized out in some cases
--> these can be optimized in all the same ways as MPI

¥ Real reason that copy routines need to be in CDS
¥ Should be used whenever they match users needs exactly

Function Meaning Semantically identical* to
send Send message rgalloc, copyto, enq, rgfree
recv Receive message deq, copyfm, rgfree
sendx Destructive send rgalloc, copyto, write, rgfree
recvx Non-destructive recv read, copyfm, rgfree



The CDS Interface (49 for now)
Managing comm heap and contexts/cells

rgalloc rgmod rgfree rgsize rgrealloc
addcntxt delcntxt grwcntxt

Communication primitives
read deq benq enq write zap enqm writem

iread ideq ibenq wait waitm ienqm benqm
Copying and Translation

copyto copyfm copytofm transtab
Composite functions (shared mem and msg passing)

recv bsend recvx send sendx sendm sendxm
acqrl acqwl rlsrl rlswl wl2rl
irecv ibsend irecvx iacqrliacqwl

Process and thread control
enlist init myinfo hdlr prior



What CDS IsnÕt Special At
(Well, no better than shared memory or message passing)

¥ Data parallelism

¥ Variable Granularity

¥ Object-oriented Programming

¥ Program Proving

¥ Fault Tolerance

¥ Software Engineering (Programming Òin the largeÓ)

¥ Managing non-determinism



F-Nets and Software Cabling
F-Nets is a formal model for parallel computers

¥ Similar to Petri Nets, Data Flow, Turing machines, CA
¥ Good for reasoning about parallel programs & taming 

nondeterminism
¥ Can be considered as CDS-like communication style 

between atomic transactions (e.g fault tolerant)

Software Cabling is graphical coordination language, based on F-nets
¥ Object-oriented
¥ Data parallel
¥ Individual modules can be written in nearly any language

--> Software Cabling solves the big problems that CDS alone doesnÕt



CDS Status and Plans
Status: Prototype exists (one at NASA?, one at elepar)

¥ Uses UDP/IP and various shared memory
¥ Implemented on MP SGI & Sun workstations, Linux PC
¥ Speed can still be improved, through optimizations such as 

lock-free queues and spin-free locks
¥ Most of the work has been in interface deÞnition

Plans: elepar wants to be a user! What is best way?
¥ Invest time and money (for every platform), and try to sell?
¥ Standardize, and let vendors implement themselves? 

(Probably by customizing existing MPI or other native 
communication packages) PICIS BOF at SC97

¥ Purely open source?


